
Context Free Grammars CSE 311 Winter 2023

Lecture 22

[Audience looks around] “What just happened?” “There must be some context we’re missing.”

xkcd.com/1090

Context Free Grammars

What Can’t Regular Expressions Do?

Some “easy” things
Where you could say whether a string matches with just a loop
{0𝑘1𝑘: 𝑘 ≥ 0}

The set of all palindromes.

And some harder things

Expressions with matched parentheses

Properly formed arithmetic expressions

Context Free Grammars can solve all of these problems!

Context Free Grammars

A context free grammar (CFG) is a finite set of production rules over:
An alphabet Σ of “terminal symbols”

A finite set 𝑉 of “nonterminal symbols”

A start symbol (one of the elements of 𝑉) usually denoted 𝑆.

A production rule for a nonterminal 𝐴 ∈ 𝑉 takes the form

𝐴 → 𝑤1 𝑤2 ⋯|𝑤𝑘

Where each 𝑤𝑖 ∈ 𝑉 ∪ Σ ∗ is a string of nonterminals and terminals.

Context Free Grammars

We think of context free grammars as generating strings.

1. Start from the start symbol 𝑆.

2. Choose a nonterminal in the string, and a production rule
𝐴 → 𝑤1 𝑤2 … |𝑤𝑘 replace that copy of the nonterminal with 𝑤𝑖 .

3. If no nonterminals remain, you’re done! Otherwise, goto step 2.

A string is in the language of the CFG iff it can be generated starting
from 𝑆.

Notation: 𝑥𝐴𝑦 ⇒ 𝑥𝑤𝑦 is rewriting 𝐴 with 𝑤.

Examples

𝑆 → 0𝑆0 1𝑆1 0|1|𝜀

𝑆 → 0𝑆|𝑆1|𝜀

𝑆 → 𝑆 𝑆𝑆 𝜀

𝑆 → 𝐴𝐵

𝐴 → 0𝐴1|𝜀

𝐵 → 1𝐵0|𝜀

The alphabet here is {(,)} i.e. parentheses are the characters.

Examples

𝑆 → 0𝑆0 1𝑆1 0|1|𝜀

The set of all binary palindromes

𝑆 → 0𝑆|𝑆1|𝜀

The set of all strings with any 0’s coming before any 1’s (i.e. 0∗1∗)

𝑆 → 𝑆 𝑆𝑆 𝜀

Balanced parentheses

𝑆 → 𝐴𝐵

𝐴 → 0𝐴1|𝜀

𝐵 → 1𝐵0|𝜀 {0𝑗1𝑗+𝑘0𝑘: 𝑗, 𝑘 ≥ 0}

Arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Generate 2 ∗ 𝑥 + 𝑦

Generate 2 + 3 ∗ 4 in two different ways

pollev.com/robbie

Arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Generate 2 ∗ 𝑥 + 𝑦

𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 ∗ 𝐸 + 𝐸 ⇒ 2 ∗ 𝐸 + 𝐸 ⇒ 2 ∗ 𝑥 + 𝐸 ⇒
(2 ∗ 𝑥) + 𝑦

Generate 2 + 3 ∗ 4in two different ways

𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4

𝐸 ⇒ 𝐸 ∗ 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4

Parse Trees

Suppose a context free grammar 𝐺 generates a string 𝑥

A parse tree of 𝑥 for 𝐺 has
Rooted at 𝑆 (start symbol)

Children of every 𝐴 node are labeled with the characters of 𝑤 for some 𝐴 → 𝑤

Reading the leaves from left to right gives 𝑥.

𝑆 → 0𝑆0 1𝑆1 0 1 𝜀

S

0 0S

S1 1

1

Back to the arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Two parse trees for 2 + 3 ∗ 4

E

E E+

∗E E2

3 4

∗

+E E

2

E

E E

3

4

How do we encode order of operations

If we want to keep “in order” we want there to be only one
possible parse tree.

Differentiate between “things to add” and “things to multiply”

Only introduce a * sign after you’ve eliminated the possibility of
introducing another + sign in that area.

𝐸 → 𝑇|𝐸 + 𝑇

𝑇 → 𝐹|𝑇 ∗ 𝐹

𝐹 → 𝐸 |𝑁

𝑁 → 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7|8|9

E

E T+

∗T F

2

F

N

T

3

F

N 4

N

CNFs in practice

Used to define programming languages.

Often written in Backus-Naur Form – just different notation

Variables are <names-in-brackets> or technical terms

like <if-then-else-statement>, <condition>, <identifier>

→ is replaced with ∷= or ∶

BNF for C (no <...> and uses : instead of ::=)

Parse Trees

Remember diagramming sentences in middle school?

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<determiner><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

Parse Trees

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<determiner><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

The old man the boat.

The old man the boat

By Jochen Burghardt - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=92742400

Power of Context Free Languages

There are languages CFGs can express that regular expressions can’t
e.g. palindromes

What about vice versa – is there a language that a regular expression
can represent that a CFG can’t?
No!

Are there languages even CFGs cannot represent?
Yes!

{0𝑘1𝑗2𝑘3𝑗|𝑗, 𝑘 ≥ 0} cannot be written with a context free grammar.

Takeaways

CFGs and regular expressions gave us ways of succinctly representing
sets of strings
Regular expressions super useful for representing things you need to search for

CFGs represent complicated languages like “java code with valid syntax”

Next Week, we’ll talk about how each of these are “equivalent to weaker
computers.”

This week: Two more tools for our toolbox.

Relations and Graphs

Relations

Wait what?

≤ is a relation on ℤ.

“3 ≤ 4“ is a way of saying “3 relates to 4” (for the ≤ relation)

(3,4) is an element of the set that defines the relation.

A (binary) relation from 𝐴 to 𝑩 is a subset of 𝑨 × 𝑩
A (binary) relation on 𝑨 is a subset of 𝑨 × 𝑨

Relations

Relations, Examples

It turns out, they’ve been here the whole time

< on ℝ is a relation

I.e. { 𝑥, 𝑦 ∶ 𝑥 < 𝑦 and 𝑥, 𝑦 ∈ ℝ}.

= on Σ∗ is a relation

i.e. { 𝑥, 𝑦 ∶ 𝑥 = 𝑦 and 𝑥, 𝑦 ∈ Σ∗}

For your favorite function 𝑓, you can define a relation from its domain to
its co-domain

i.e. { 𝑥, 𝑦 ∶ 𝑓 𝑥 = 𝑦}

“𝑥 when squared gives 𝑦” is a relation

i.e. { 𝑥, 𝑦 : 𝑥2 = 𝑦, 𝑥, 𝑦 ∈ ℝ}

Relations, Examples

Fix a universal set 𝒰.

⊆ is a relation. What’s it on?

𝒫(𝒰)
The set of all subsets of 𝒰

More Relations

𝑅1 = { 𝑎, 1 , 𝑎, 2 , 𝑏, 1 , 𝑏, 3 , 𝑐, 3 }

Is a relation (you can define one just by listing what relates to what)

Equivalence mod 5 is a relation.

{ 𝑥, 𝑦 ∶ 𝑥 ≡ 𝑦 𝑚𝑜𝑑 5 }

We’ll also say “x relates to y if and only if they’re congruent mod 5”

Properties of relations

What do we do with relations? Usually we prove properties about them.

Symmetry

A binary relation 𝑅 on a set 𝑺 is “symmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity

A binary relation 𝑅 on a set 𝑺 is “transitive” iff

for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

= on Σ∗ is symmetric, for all 𝑎, 𝑏 ∈ Σ∗ if 𝑎 = 𝑏 then 𝑏 = 𝑎.
⊆ is not symmetric on 𝒫(𝒰) – 1,2,3 ⊆ {1,2,3,4} but 1,2,3,4 ⊈ {1,2,3}

= on Σ∗ is transitive, for all 𝑎, 𝑏, 𝑐 ∈ Σ∗ if 𝑎 = 𝑏 and 𝑏 = c then 𝑎 = 𝑐.
⊆ is transitive on 𝒫(𝒰) – for any sets 𝐴, 𝐵, 𝐶 if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 then 𝐴 ⊆ 𝐶.

∈ is not a transitive relation – 1 ∈ {1,2,3}, 1,2,3 ∈ 𝒫(1,2,3) but 1 ∉ 𝒫 1,2,3 .

Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)

This was a proof that the relation { 𝒂, 𝒃 ∶ 𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒏 } is symmetric!

It was actually overkill to show if and only if. Showing just one direction

turns out to be enough!

What about transitivity?

Some quarters there’s a homework problem…we didn’t have one this
time.

Divides is a transitive relation!

If 𝑝|𝑞 and 𝑞|𝑟 then 𝑝|𝑟.

More Properties of relations

What do we do with relations? Usually we prove properties about them.

Antisymmetry

A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity

A binary relation 𝑅 on a set 𝑺 is “reflexive” iff

for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

≤ is antisymmetric on ℤ

≤≤ is reflexive on ℤ

You’ve proven antisymmetry too!

You showed | is antisymmetric on ℤ+ in section 5.

for all 𝑎, 𝑏 ∈ 𝑆, [𝑎, 𝑏 ∈ 𝑅 ∧ b, a ∈ 𝑅 → 𝑎 = 𝑏] is equivalent to the
definition in the box above

The box version is easier to understand, the other version is usually
easier to prove.

Antisymmetry

A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Try a few of your own

Decide whether each of these relations are

Reflexive, symmetric, antisymmetric, and
transitive.

⊆ on 𝒫(𝒰)

≥ on ℤ

> on ℝ

| on ℤ+

| on ℤ

≡ (𝑚𝑜𝑑 3) on ℤ

Pollev.com/robbie

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

Try a few of your own

Decide whether each of these relations are

Reflexive, symmetric, antisymmetric, and
transitive.

⊆ on 𝒫 𝒰 reflexive, antisymmetric, transitive

≥ on ℤ reflexive, antisymmetric, transitive

> on ℝ antisymmetric, transitive

| on ℤ+ reflexive, antisymmetric, transitive

| on ℤ reflexive, transitive

≡ (𝑚𝑜𝑑 3) on ℤ reflexive, symmetric, transitive

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺,

[𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

