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Let's Try Another! Stamp Collecting

| have 4 cent stamps and 5 cent stamps (as many as | want of each).
Prove that | can make exactly n cents worth of stamps for all n > 12.

Try for a few values.
Then think...how would the inductive step go?




Stamp Collection, Done Wrong

Define P(n) | can make n cents of stamps with just 4 and 5 cent stamps.
We prove P(n) is true for all n = 12 by induction on n.

Base Case:

12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose P(k), k = 12.

Inductive Step:

We want to make k + 1 cents of stamps. By IH we can make k cents
exactly with stamps. Replace one of the 4 cent stamps with a 5 cent

stamp.
P(n) holds for all n by the principle of induction.




Stamp Collection, Done Wrong

What if the starting point doesn’t have any 4 cent stamps?
Like, say, 15 cents = 5+5+5.




Gridding

've got a bunch of these 3 piece tiles.

| want to fill a 2™"x2™ grid (n = 1) with the pieces, except for a 1x1 spot
IN a cornetr.




Gridding: Not a formal proof, just a sketch

Base Case:n =1 .

Inductive hypothesis: Suppose you can tile a 2%¥x2* grid, except for a
corner.

Inductive step: 2k+1x2k*1 divide into quarters. By IH can tile...

=
= [




Recursively Defined Functions

Just like induction works will with recursive code, it also works well for
recursively-defined functions.

Define the Fibonacci numbers as follows:

f(0) =1

f(1)=1

fmM=fn—1)+f(n—-2)foralln e N,n > 2.

*This is a somewhat unusual definition, f(0) =0, f(1) = 1 is more
common.



Fibonacci Inequality

Show that f(n) < 2™ for all n = 0 by induction.

fO=1  f(=1
fM)=f(n—1)+f(n—2) foralln € N,n > 2.




f@O=1 fO=1
fM)=f(n—1)+f(n—2) foralln € N,n > 2.

Fibonacci Inequality

Show that f(n) < 2™ for all n = 0 by induction.

Define P(n) to be “f(n) < 2™ We show P(n) is true for alln = 0 by
induction on n.

Base Cases: (n=10): f(0)=1<1=2°
(n=1): f(1)=1<2=2"

Inductive Hypothesis: Suppose P(0) A P(1) A--- A P(k) for an arbitrary
k>1.

Inductive step:

Target: P(k + 1).ie. f(k +1) < 2k*1



. ] ) fO=1 fO=1
FlbOnaCC| |nequa||ty fM)=fn—1)+f(n—2)foralln € N,n = 2.

Show that f(n) < 2" for all n = 0 by induction.

Define P(n) to be "f(n) < 2™ We show P(n) is true for all n = 0 by
induction on n.

Base Cases: (n=0): f(0)=1<1 =2
(n=1): f(1)=1<2=21%
Inductive Hypothesis: Suppose P(0) A P(1) A--- A P(k) for an arbitrary k > 1.

Inductive step: f(k+ 1) = f(k) + f(k — 1) by the definition of the Fibonacci

numbers. Applying IH twice, we have f(k + 1) < 2k + 2871 < 2k 4 2k =
2k+1.

Therefore, we have P(n) for all n = 0 by the principle of induction.



Claim: 3|(24™"—1) for all n

[Define P(n)]

Base Case
Inductive Hypothesis
Inductive Step

[conclusion]

(1)



N.

(1)

Claim: 3|(24™"—1) for all n

Let P(n) be “3|(2°™—1)." We show P(n) holds for all n € N.

Base Case (n = 0) note that 2" —1 =2 -1 = 0. Since 3-0 = 0, and
0 is an integer, 3|(2%°%-1).

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = 0
Inductive Step:

Target: P(k + 1), i.e. 3|(22**+D—1)
Therefore, we have P(n) for all n € N by the principle of induction.



Claim: 3|(2%™"—1) for all n € N.

Let P(n) be “3|(2%™"—1)." We show P(n) holds for all n € N.

Base Case ( (n,= Of notethat 24" —1=2°—-1=0.Since3-0=0, and 0 is an
integer, 3[(22°-1).

Inductive Hypothesis: Suppose P(k) holds for an arbitrary k = 0

Inductive Step: By inductive hypothesis, 3[(2%2%—1). i.e. there is an integer
such that 3j E 2%/ 1. /P € ) 9erJ

22(k+1) —1=4- 22k -1

(1)

FORCE the expression in your IH to appear

Target: P(k + 1), i.e. 3|(22(k+D—1)
Therefore, we have P(n) for all n € N by the principle of induction.



N.

(1)

Claim: 3|(24™"—1) for all n

Let P(n) be “3|(2°™—1)." We show P(n) holds for all n € N.

gf(szez. as%(n = 0) note that 22" — 1 =2%—-1 = 0. Since 3- 0 = 0, and 0 is an integer,

Inductive Hypothesis: Suppose P(k) holds for an arbitrary k = 0
Iznzc;l(uctilve Step: By inductive hypothesis, 3|(22%—1). i.e. there is an integer j such that 3j =

22(k+1) — 1 =4.22k — 1 =4(22k - 1) +4 -1

By IH, we can replace 22¥ — 1 with 3;j for an integer j

220t 1 =43)+4-1=34))+3=34j+1)

Since 4j + 1 is an integer, we meet the definition of divides and we have:
Target: P(k + 1), i.e. 3|(22(k*+D—1)

Therefore, we have P(n) for all n € N by the principle of induction.



Claim: 3|(24™"—1) for all n

(1)
Z

That inductive step might still seem like magic.

It sometimes helps to run through examples, and look for patterns:
220 -1=0=3-0

2?21 -1=3=3-1 The divisor goes from k to 4k + 1
55 0-4-0+1=1
2¢4—1=15=3-5 1>4-1+1=5
5-4-54+1=21
223 -1=63=3-21
, That might give us a hint that 4k + 1 will be
224 _ 1 =255=3-85 i

in the algebra somewhere, and give us
, another intermediate target.
225 _1=1023 =3-341 °



Induction: Hats!

You have n people in a line (n = 2). Each of them wears either a purple
hat or a . The person at the front of the line wears a purple hat.
The person at the back of the line wears a gold hat.

Show that for every arrangement of the line satisfying the rule above,
there is a person with a purple hat next to someone with a gold hat.

Yes this is kinda obvious. | promise this is good induction practice.

Yes you could argue this by contradiction. | promise this is good
induction practice.



Induction: Hats!

Define P(n) to be “in every line of n people with gold and purple hats, with a
purple hat at one end and a gold hat at the other, there is a person with a
purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.
Base Case: n = 2

Inductive Hypothesis:

Inductive Step:

By the principle of induction, we have P(n) for all n > 2



Induction: Hats!

Define P?n) to be "in every line of n people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider an arbitrary line with k + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.
By the principle of induction, we have P(n) for all n > 2



Induction: Hats!

Define P?n) to be "in every line of n people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider an arbitrary line with k + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Case 1. There is someone with a purple hat next to the person in the gold hat at one end. Then those
people are the required adjacent opposite hats.

Case 2.. There is a person with a gold hat next to the person in the gold hat at the end. Then the line
from the second person to the end is length k, has a gold hat at one end and a purple hat at the
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have P(k + 1).
By the principle of induction, we have P(n) for all n > 2



fO=1 f1)=1
Fibonacci Inequality Tw£<">—f<" SARIEILA LA

Show that f(n) = 2™/?2 for all n > 2 by induction.
[Define P(n)]
Base Cases:

Inductive Hypothesis:
Inductive step:

Therefore, we have P(n) for all n = 0 by the principle of induction.



fO=1 fO=1

Fibonacci Inequality Twéd(’”=f<"—1>+f<"—2>f°f°""€N'"22-

Show that f(n) = 2™2 for all n > 2 by induction.
Define P(n) to be “f(n) = 2™/2" We show P(n) is true for all n > 2 by induction on n.
Base Cases: f(2) = f(1) + f(0) =2 > 2 = 21 = 22/2

fA=fQ+fA)=2+1=3=2-222V2 =215 =23/

Inductive Hypothesis: Suppose P(2) A P(3) A--- A P(k) for an arbitrary k = 3.

Inductive step: f(k + 1) = f(k) + f(k — 1) by the definition of the Fibonacci numbers. Applying IH
twice, we have

Target: f(k + 1) > 2k+1)/2
Therefore, we have P(n) for all n = 0 by the principle of induction.



fO=1 fO=1

Fibonacci Inequality Twéd(’”=f<"—1>+f<"—2>f°f°""€N'"22-

Show that f(n) = 2™2 for all n > 2 by induction.
Define P(n) to be “f(n) = 2™/2" We show P(n) is true for all n > 2 by induction on n.

Base Cases: f(2) = f(1) + f(0) =2 >2 =21 = 22/2
fA=fQ+fA)=2+1=3=2-222V2 =215 =23/

Inductive Hypothesis: Suppose P(2) A P(3) A--- A P(k) for an arbitrary k = 3.

Inductive step: f(k + 1) = f(k) + f(k — 1) by the definition of the Fibonacci numbers. Applying IH
twice, we have

flk+1) = 2k/Z 4 20=1)/2

> (k+1)/2

Therefore, we have P(n) for all n = 0 by the principle of induction.



fO=1 fO=1

Fibonacci Inequality Twéd(’”=f<"—1>+f<"—2>f°f°""€N'"22-

Show that f(n) = 2™2 for all n > 2 by induction.
Define P(n) to be “f(n) = 2™/2" We show P(n) is true for all n > 2 by induction on n.

Base Cases: f(2) = f(1) + f(0) =2 >2 =21 = 22/2
fA=fQ+fA)=2+1=3=2-222V2 =215 =23/

Inductive Hypothesis: Suppose P(2) A P(3) A--- A P(k) for an arbitrary k = 3.

Inductive step: f(k + 1) = f(k) + f(k — 1) by the definition of the Fibonacci numbers. Applying IH
twice, we have

flk+1) = 2k/Z 4 20=1)/2
= 20-D/2(y7 + 1)
> 2k-1)/2 . 9
> 2(k+1)/2

Therefore, we have P(n) for all n = 0 by the principle of induction.






Even More Induction Practice

1 ifn=20
n-g(n—1) otherwise

Let g(n) = {

Let h(n) = n"

Claim: h(n) = g(n) for all integersn > 1



Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1
We show P(n) for all n = 1 by induction on n.

Base Case

Inductive Hypothesis:

Inductive Step:

Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n.

Let g(n) = {
Let h(n) = n™

1

n-gn-1)

ifn=20
otherwise




Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1

We show P(n) for all n = 1 by induction on n.
BaseCase(n=1):h(n)=1'=1>1=1-1=1-g9(0) = g(1).
Inductive Hypothesis: Suppose P (k) is true for an arbitrary k > 1.
Inductive Step:

glk+1)=(k+1)-g(k)

= (k + 1)k
Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n.

Let g(n) = {n '1g(n —1)
Let h(n) = n™

ifn=20
otherwise




Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1
We show P(n) for all n = 1 by induction on n.
BaseCase(n=1):h(n)=1'=1>1=1-1=1-g9(0) = g(1).
Inductive Hypothesis: Suppose P (k) is true for an arbitrary k > 1.
Inductive Step:
gk+1)=((k+1) - gk)

< (k+1)-h(k) by IH.

= (k + 1)k
Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n.

Let g(n) = {n '1g(n —1)
Let h(n) = n™

ifn=20
otherwise




Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1
We show P(n) for all n = 1 by induction on n.
BaseCase(n=1):h(n)=1'=1>1=1-1=1-g9(0) = g(1).
Inductive Hypothesis: Suppose P (k) is true for an arbitrary k > 1.
Inductive Step:
glk+1)=(k+1)- g(k)

<(k+1)- -hk) by IH.

n-gn-1)

<(k+1)-kk by definition of h(k)
<(k+1)-(k+ 1k
= (k + 1)k,
Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n. Let g(n) = { 1
Let h(n) = n™

ifn=20
otherwise




Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1
We show P(n) for all n = 1 by induction on n.
BaseCase(n=1):h(n)=1'=1>1=1-1=1-g9(0) = g(1).
Inductive Hypothesis: Suppose P (k) is true for an arbitrary k > 1.
Inductive Step:
glk+1)=(k+1)- g(k)

<(k+1)- -hk) by IH.

n-gn-1)

<(k+1)-kk by definition of h(k)
<(k+1)-(k+ 1k
= (k + 1)k,
Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n. Let g(n) = { 1
Let h(n) = n™

ifn=20
otherwise




Even More Induction Practice: Sums

. (n+1)(3n+4)
Let P(n) be )iy 2 + 3i =

Show P(n) for all n € N by induction on n.
Base Case (n = 0):

nductive Hypothesis:

nductive Step:

‘Conclusion]



Even More Induction Practice: Sums

Let P(n) be $1y 2 + 3i = T2
Show P(n) for all n € N by induction on n.
Base Case m = 0): Y1 2 +3i=2= g _ (O+1)(23.0+4)

Inductive Hypothesis: Suppose P (k) is true for an arbitrary k = 0.
Inductive Step:

([k+1]+1)(3[k+1]+4)

Target: Y5412 + 3i = -




Even More Induction Practice: Sums

Let P(n) be 2 + 3i = CrGn
Show P(n) for all n € N by induction on n.
Base Case m = 0): Y1 2 +3i=2= g _ (O+1)(23.0+4)

Inductive Hypothesis: Suppose P (k) is true for an arbitrary k = 0.
Inductive Step:

Y 2+3i= (22 +30) +(2+3(k+1)). By H, we have:
Y
Zk+1 243 = _ (k+1)(3k+4)
2

+2+3k+3=?777

(Jk+1]+1)@B[k+ 1] +4)
2




Even More Induction Practice: Sums

_ (n+1)(3n+4)

Let P(n) be },i—o2 + 3i =

Show P(n) for aII n € N by induction on n.

Base Case (n =0): Y7 ,2+3i=2= % _ (O+1)(23.0+4)

Inductive Hypothesis: Suppose P (k) is true for an arbitrary k = 0.

Inductive Step:
Y2 +3i =2+ 3i) + (24 3k +1)). By IH, we have:

yhilo 4 3 _ k+D)GKH4) | 5 4 343 = 3k2+7Kk+4 4 Sk+10 3k?+13k+14
Ghanced) _ (et @11 +9) 2 2 2
2 2

Therefore, P(n) holds for all n € N by induction on n.



