Proof By Contradiction Skeleton

Suppose, for the sake of contradiction $\neg p$... q ... $\neg q$ But q and $\neg q$ is a contradiction! So we must have p.

Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:

J	us	†	th	10	S	ke	let	·	n
_	\mathbf{u}		CI				\sim $^{\circ}$. 🔾	

"For all integers x, if x^2 is even, then x is even."

Just the Skeleton

"There is not an integer k such that for all integers $n, k \ge n$.