1111111 Inter 2023

”' :
\9:‘ :
Induction | &0



Announcements

HWS5 (released tonight) is due Wed. Feb. 8
“part 2" is induction; we'll return that to you before the midterm ends

“part 1" is number theory topics; we won't return that to you before the
midterm ends.

The midterm happens Feb. 11-13

Taken at-home; once you open the exam, you'll have 2 hours to submit it.
You get to choose when you're doing it (Friday night through Sunday 11:59
PM).

't will be short (intent is something you could finish in ~30 min.) more
information coming to the webpage shortly.



How do we know recursion works?
] \( B 3

//Assume 1 is a nonnegative integer ( ; ¢ ;
—_— - =

//returns 27°1.

} public 1nt CalculatesTwoToThelI (int 1) {4 )

1f(1 == 0)
Kj— return 1; \\Q\\

{//else

}
\
Why does CalculatesTwoToThel (4) calculate 2747 %

Convince the people aroundyout—— =




How do we know recursion works?

Something like this:

Well, as long as CalculatesTwoToTheI (3) = 8, we get 16...

Which happens as long as CalculatesTwoToTheI (2) = 4
Which happens as long as CalculatesTwoToTheI (1) = 2
Which happens as long as CalculatesTwoToTheI (0) = 1
And it is! Because that's what the base case says.




How do we know recursion works?

There's really only two cases.
The Base Case is Correctﬂ

CalculatesTwoToTheI (0) = 1 (which 1t should!)
And that means CalculatesTwoToTheI (1) = 2, (like it should)
And that means CalculatesTwoToThel (2) = 4, (like it should)

-

t
And that means CalculatesTwoToTheI (3) = 8, (like it should)
t

ANna

nat means CalculatesTwoToTheI (4) = 16, (like it should)
—

IF the recursive call we make is correct
THEN our value is correct.




How do we know recursion works?

The code has two big cases,
So our proof had two big cases

[:The base case of the code produces the correct output”

“IF the calls we rely on produce the correct output THEN the current call \
produces the right output”



A bit more formally...

“The base case of the code produces the correct output”

“IF the calls we rely on produce the correct output THEN the current call
oroduces the right output”

et P(i) be’ CalculatesTonoTheI returns 2t

Howdowe knom \—//
/P(O) IS true.

——

And P(_m :P(l), so P(1).
And P(1) - @ SO P(Z)

And P(2) — P(3), so P(BZ.
Ancm so P(4).




A bit more formally...

This works alright for P(4).

What about P(1000)? P(1000000000)7

q

At this point, we'd need to show that implication P(k) - P(k + 1) for A
BUNCH of values of k. I ——

But the code is the same each time.

And so was the argument!

We should instead show Vk[P(k) - P(k + 1)].

*




Induction

Your new favorite proof technique!

How do we Sh@ vn,P(n)? D

vk(P(k) = P(k + 1))

I ——
e — — —— —




//Assume 1 is a nonnegative integer
M public int CalculatesTwoToTheI (int 1) {
Induction Cithi - 0
— 2return 1;
else

returq=£jCaclulatesTonoTheI(i—l);
} . ——
Let P(i) be “CalculatesTwoToThel (i) returns 2"

— —_— _ —
@ote that if the input i is O, _Then the if-statement evaluates to true, and

1 =270 is returned, so P(0) is true.

Suppose P(k or an arbitrary k = 0.
Consider the code on k+1.Sincek>0,k+1>0andwe arein the else

branch. By inductive hypothesis, CalculatesTwoToThel (k) returns.2¥, so the
code run on k + 1 returns 2 - 2k = 2k+1,

So P(k + 1) holds.)
(jTherefore P(n) holds for all n = 0 by the principle of induction./}




Making Induction Proofs Pretty

f_et P(i) be the predicate “CalculatesTwoToTheI (i) returns Z/i.BWe
orove P(n) holds for all n € N by induction on n.

_— _
Base Case (i = 0) Note that if the input i is O, then the if-statement
evaluates to true, and 1 = 220 is returned, so P(0) is true.

@nductive Hypothesis: Suppose P(k) holds for an arbitrary k = 0.

nductive Step: Since k = 0,k + 1 = 1, so the code goes to the recursive
case. We will return 2 - CalculatesTwoToThelI (k). By Inductive
Hypothesis,

CalculatesTwoToThelI (k)= 2% Thus we return 2 - 2k = 2k+1
([ So P(k + 1) holds.

Therefore P(n) holds for all n = 0 by the principle of induction. \
- —




Making Induction Proofs Pretty

All of our induction proofs will come in 5 easy(?) steps!
CT Define P(n). State that your proof is by induction on n.
[ 2.Show P(0) i.e. show the base case
( 3. Suppose P (k) for an arbitrary k.

4. Show P(k+ 1) (i.e.get P(k) » P(k + 1))

/-5. Conclude by saying P(n) is true for all n by inductiorﬂ



Some Other Notes

Always state where you use the (nductive hypothe5| hen you're using

it in the inductive step. =

It's usually the key step, and the reader really needs to focus on it.

Be careful about what values you're assuming the Inductive Hypothesis

for — the smallest possible value of k should assume the base case but
nothing more.



The Principle of Induction (formally)

)
// [ Principle of] P‘-(O); v‘—-——ﬁk(P(k) AR
Induction | vn(P(n))

L _

Informally: if you knock over one domino, and every domino knocks
over the next one, then all your dominoes fell over.






More Induction

Induction doesn’t only work for code!
Show that Y 2t =142+ 4+ -+ 20 =2"t1 — 1,



More Induction

Induction doesn’t only work for code!

Show that ¥ 2! =1+ 2+ 4+ -+ 2" =271 — 1,
Let P(n) ="y 2t =21 — 1"

We show P(n) holds for all n by induction on n.
Base Case ()

Inductive Hypothesis:

Inductive Step:

P(n) holds for all n = 0 by the principle of induction.



More Induction

Induction doesn’t only work for code!

Show that ¥ 2! =1+ 2+ 4+ -+ 2" =271 — 1,

Let P(n) ="y 2t =21 — 1"

We show P(n) holds for all n by induction on n.

Base Case (n = 0) Y} ,2!=1=2—-1=20+1 -1

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = 0.
Inductive Step: We show P(k + 1). Consider the summation).¥*1 2t =
2k+1 4wk 2t = 2k+1 4 2k+1 _ 1 where the last step is by IH.

Simplifying, we get: Y it 12t = 2k+1 4 pk+1 1 = 2. 2k+1 _ 1 =
2(k+1)+1 —1.

P(n) holds for all n = 0 by the principle of induction.



