CSE 311 Winter 2023
Lecture 10

Sets
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Doing a Proof

(‘v’x‘v’y([rational(x) rational(y)] %rational(xy))ﬁ
B e —

“The product of two rational numbers is rationat”

DON'T just jump right in!

Look at the statement, make sure you know:
1. What every word in the statement means.
2. What the statement as a whole means.

3. Where to start.

4. What your target is.




Let's do another!

“The product of two rational numbers is rational.”
Let x, y be arbitrary rational numbers.

—_— — ——

\ P

[ Therefore, xy is rational.
—_ >

Since x and y were arbitrary, we can conclude the product of two
rational numbers is rational.



Let's do another!

BN

“The product of two rational numbers is ration@

Let x, y be arbitrary rational numbers.

By the definition of rational, x = a/b, y = c/d for integers a, b, c, d
whereb#0andd #0. _ (R —

Multiplying, xy = 3 2

(g Since integers are“_[ose Junder multlph\ca;@ac and bd are integers.
A =

Moreover, bd # 0 because neither b nor d is 0. Thus xy is rational.

Since x and y were arbitrary, we can conclude the product of two
rational numbers is rational.



Now You Try

The sum of two even numbers is even.

1. Write the statement in predicate logic.
2. Write an English proof.

3. If you have lots of extra time, try writing the symbolic proof instead.



Even

An integer x is even if (and
only if) there exists an

Now You Try

The sum of two even numbers is even. :
integer z, such that x = 2z.

Make sure you know: Pollev.com/robbie

1. What every word in the statement means : :
Help me adjust my explanation!

2. What the statement as a whole means.

3. Where to start. 1. Write the statement in predicate

4. What your target is. ~ '°¢gic
2. Write an English proof.

3. If you have lots of extra time, try
writing the symbolic proof instead.



Since a and b are integers, a + b is an intege
definition of even.

Since x,y were arbltrary, we can conclude the sum of two even integers
s even. — T




Why English Proofs?

Those symbolic proofs seemed pretty nice. Computers understand
them, and can check them.

So what's up with these English proofs?

They're far easier for people to understand.

But instead of a computer checking them, now a human is checking
them.



Today

s a laundry list of definitions — everything you ever wanted to know
about sets and a pinch of number theory.

we'll get to do a proof, hopefully.



Sets

A set is an unordered group of distinct elements.

/-—\__-

We'll always write a set as a list ofﬁe]ements inside {curly, brackets}.

Variable names are capital letters, with lower-case letters for elements.

|A| = 2. “The size of A is 2.” or “A has cardinality 2.”

A = {curly, brackets}

B ={0,5,8,10} = {5,0,8,10} = {0,0,5,8,10}
5 =1 .
C=1{01234,..})



Sets

Some more symbols:

a €A ("aisin A" or "a is an element of A") means a is one of the
members of the set.

For B = {0,5,8,10}, 0 € B.

A C B (A is a subset of B) means every element of A is also in B.
ForA ={1,2}, B={123}ACB



Try It!

Let A = {1,2,3,4,5)
B = {1,2,5)

sAC A?
SB € A?
sAC B?
s{1} € A7
sl1eA?




Try It!

Let A = {1,2,3,4,5)

B ={1,2,5}

sACS A?  VYes!
sBC A? VYes
sAS B? No
s{1} € A? No
sleAd? Yes




Sets

Be careful about these two operations:
If A = {1,2,3,4,5)

(1} A but{1} ¢ A

€ asks: is this item in that box?
C asks: is everything in this box also in that box?



Set Builder Notation

\

Sometimes we want to give a property and say “everything with that
property is in the set (and nothing else is in the set).”

LY

j) Even(x)}
“The set much that x is even”

In general {variable : Condition(variable)}

Sometimes the colon is replaced with |

%



Definitions

A C B ("A is a subset of B") iff every element of 4 is also in B.

ACB=VxixeA—-x€B)

m—

A = B ("A equals B") iff A and B have identical elements.

A=BEVx(xEA<—>xEB)EA§B/\B§




Proof Skeleton

N L
ACB=Vx(x€eEA—->x€EB)

How would we show A € B?

o N—

Let x be an arbitrary element of A

— -

S

So x is alsoin B.
Since x was an arbitrary element of 4, we have that A € B.




Proof Skeleton

That wasn't a “new” skeleton! It's exactly what we did when we wanted
to prove Vx(P(x) - Q(x)) !

What about A = B?

A=B=Vx(xeAox€e€B)=ASBABCA

Just do two subset proofs!
.e.Vx(xEA—->x€eB)andVx(xEB - x €A



What do we do with sets?

We combined propositions with V,A, —.

We combine sets with N [intersection|,U, [union] “[complement]

A‘@Bz{x:xe x € B}
=

ANB={x:x € AANx € B}
e

A= {X: X & A} That's a lot of elements...if we take the complement, we'll have

some “universe” U, end A = {x:x € U Ax & A}
it's a Ict Likc thie domain of discourse.







A proof!

What's the analogue of DeMorgan's Laws...

st X-bHe an arbitrary element of A N B.
D

That is, X is in the complement of A U B, as required. _'EUB

Since x was arbitrary ANB €S AUB

A=B=Vx(xeAox€e€B)=ASBABCA

UBCANB
Let x be an arbitrary element of A U B.

we get X € ANB
Since x was arbitrary AUB S ANB

Since the subset relation holds in both directions, we have ANB = AU B d\j




A proof!

ANB=AUB
——

ANB<AUB

Let x be an arbitrary element of A N B.

By definition of N x € A and x € B. By definition of complement, x € A A x & B.

Applying DeMorgan’s Law, we get that it is not the case that x € AV x € B.

That is, X is in the complement of A U B, as requiredc——

Since x was arbitrary ANB €S AUB

AUBCANB

Let x be an arbitrary element of A U B.

By definition of complement, x is not an element of A U B. Applying the definition of union, we get, =-(x E AV x € B)
Applying DeMorgan’s Law, we get: x EAANX & B

By definition of N and complement, we get x € AN B

Since x was arbitrary AUB €S ANB

Since the subset relation holds in both directions, we have AN B = AU B




Proof-writing advice

When you're writing a set equality proof, often the two directions are
nearly identical, just reversed.

It's very tempting to use that x € A & x € B definition.

Be VERY VERY careful. It's easy to mess that up, at every step you need
to be saying “if and only it



Two claims, two proof techniques

Suppose | claim that for all sets A,B,C: AnNB € C
P _ J
That...doesn't look right.

How do you prove me wrong?




Two claims, two proof techniques

Suppose | claim that for all sets A,B,C: AnNB € C
That...doesn't look right.

How do you prove me wrong?

M\
Want to sho@B,C:AnB % C

[Eonsider A=T11,2,3), B ={1,2), C = {23}, then An B = {1,2}, which is

not a subset of C. — —_



Proof By [Counter]Example

To prove an existential statement (or disprove a universal statement),
provide an example, and demonstrate that it is the needed example.

You don't have to explain where it came from! (In fact, you shouldn't)

Computer scientists and mathematicians like to keep an air of mystery
around our proofs.

(or more charitably, we want to focus on just enough to believe the claim)
__—




Skeleton of an Exists Proof

To show Ax(P(x))

Consider x =[the value that will work]
[Show that x does cause P(x) to be true.]

So [value] is the desired x.

You'll probably need some “scratch work” to determine what to set x to.
That might not end up in the final proof!



"Proof By Cases

let A = {x : Prime(x)}, B = {x: 0dd(x) V PowerOfTwo(x)}
Where PowerOfTwo(x) := dc(Integer(c) Ax = 2°¢c)
Prove A € B

We need two different arguments — one for 2 and one for all the other
primes...



Proof By Cases

Let x be an arbitrary element of A.

We divide into two cases.
FCase 1. x Is even

If x is even and an element of 4 (i.e. both even and prime) it must be 2.
So it equals 2”¢ for ¢ = 1, and thus is in B by definition of B.

Case 2: x is odd
Then x € B by satistying the first requirement in the definition of B.

In either case, x € B. Since an arbitrary element of A4 is also in B, we
have A € B.



Proof By Cases

Make it clear how you decide which case your in.
It should be obvious your cases are “exhaustive”

Reach the same conclusion in each of the cases, and you can say you've
got that conclusion no matter what (outside the cases).

Advanced version: sometimes you end up arguing a certain case “can’t
happen”



One More Set Operation

Given a set, let's talk about it's powerset.

P(A) = {X:X Is a subset of A}
The powerset of A is the set of all subsets of A.

P(1,2}) = {0,{1}12},{1,2}}



‘ Read on Your Own



Some old friends (and some new ones)

N is the set of Natural Numbers; N = {0, 1, 2, ...}

Z is the set of Integers; Z =1{..., -2,-1,0,1, 2, ..}

Q is the set of Rational Numbers; e.g. V2, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, i,v/2
[n] is the set {1, 2, ..., nN} when n is a positive integer

{} = D is the empty set; the only set with no elements



Some old friends (and some new ones

Our natural numbers start at 0.
Common in CS, other resources start at 1.

N is the set of Natural Numbers; N = {0, 1, 2, ...}

Z is the set of Integers; Z = {..., -2,-1,0,1, 2, ..}

Q is the set of Rational Numbers; e.g. 2, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, i,v/2
[n] is the set {1, 2, ..., N} when n is a positive integer

{} = D is the empty set; the only set with no elements

In LaTeX \mathbb{R}
In Office \doubleR

Use this symbol not {}.

In LaTex \varnothing In Office \emptyset.



More Connectors!

A\ B "A minus B”

A\B={x:x€e AANx & B}

A @ B "XOR" (also called “symmetric difference”)

ADB={x:xe AD x € B}




More Connectors!

AXB={(ab):a€ ANDb € B}
Called “the Cartesian product” of A and B.

R X R is the “real plane” ordered pairs of real numbers.

{1,2} x {1,2,3} = {(1,1), (1,2),(1,3),(2,1),(2,2), (2,3)}



‘ Number Theory



Why Number Theory?

Applicable in Computer Science

“hash functions” (you'll see them in 332) commonly use modular arithmetic
Much of classical cryptography is based on prime numbers.

More importantly, a great playground for writing English proofs.



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

—

Key generation [edit]

The keys for the RSA algorithm are generated in the following way:

1. Choose two distinct prime numbers p and gq.
e For security purposes, the integers p and g should be chosen at random and should be similar in magnitude but differ in length by a few digits to make factoring harder.[2! Prime integers can be efficiently found using a primality
test.
¢ p and g are kept secret.
2. Compute n = pg.
¢ nis used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
¢ nis released as part of the public key.
3. Compute A(n), where A is Carmichael's totient function. Since n = pg, A(n) = lem(A(p), A(g)), and since p and g are prime, A(p) = @(p) = p — 1, and likewise A(g) = g — 1. Hence A(n) = lem(p -1, g — 1).
¢ A(n) is kept secret.
¢ The lcm may be calculated through the Euclidean algorithm, since lcm(a, b) = |ab|/gcd(a, b).
4. Choose an integer e such that 1 < e < A(n) and gcd(e, A(n)) = 1; that is, e and A(n) are coprime.
¢ e having a short bit-length and small Hamming weight results in more efficient encryption — the most commonly chosen value for e is 276 4+ 1 = 65 537. The smallest (and fastest) possible value for e is 3, but such a small value
for e has been shown to be less secure in some settings.[19)
¢ ¢ is released as part of the public key.
5. Determine d as d = e”' (mod A(n)); that is, d is the modular multiplicative inverse of e modulo A(n).
¢ This means: solve for d the equation d-e = 1 (mod A(n)); d can be computed efficiently by using the extended Euclidean algorithm, since, thanks to e and A(n) being coprime, said equation is a form of Bézout's identity, where d is
one of the coefficients.
e d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryption) exponent d, which must be kept secret. p, g, and A(n) must also be kept secret because they can be

used to calculate d. In fact, they can all be discarded after d has been computed.[m]



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Key generation | edit] Prime Numbers

The keys for the RSA algorithm are genera

1. Choose two distinct prime numbers p and gq.

e For security purposes, the integers p and g should be chosen at random and should be similar in magnitude but differ in length by a few digits to make factoring harder.[2! Prime integers can be efficiently found using a primality
test.

* pand g are kept secret. Modular Arithmetic
2. Compute n = pg.

¢ nis used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
¢ nis released as part of the public key.
3. Compute A(n), where A is Carmichael's totient function. Since n = pg, A(n) = lem(A(p), A(g)), and since p and g are prime, A(p) = @(p) = p — 1, and likewise A(q) = g — 1. Hence A(n) =lem(p -1, g — 1).

¢ A(n) is kept secret.

e The lcm may be calculated through the Euclidean algorithm, since lcm(a, b) MOdUIG r MUI“ pllcq“‘/e Inve rse

4. Choose an integer e such that 1 < e < A(n) and gcd(e, A(n)) = 1; that is, e and A(

¢ e having a short bit-length and small Hamming weight results in more efficient eng e most commonly chosen value for e is 216 + 1 = 65 537. The smallest (and fastest) possible value for e is 3, but such a small value

for e has been shown to be less secure in some settings.['?!
e ¢ is released as part of the public key. BeZOUt’S Theorem
5. Determine d as d = ' (mod A(n)); that is, d is the modular multiplicative inverse of @ modulo A(n).
¢ This means: solve for d the equation d-e = 1 (mod A(n)); d can be computed efficiently by using the extended Euclidean algorithm, since, thanks to e and A(n) being coprime, said equation is a form of Bézout's identity, where d is
one of the coefficients.

e d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryp EXfend ed EUCIid iCI n Algorifhm also be kept secret because they can be

used to calculate d. In fact, they can all be discarded after d has been computed.[m]



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Encryption [edit]
After Bob obtains Alice's public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer m (strictly speaking, the padded plaintext), such that 0 < m < » by using an agreed-upon reversible protocol known as a padding scheme. He then

computes the ciphertext ¢, using Alice's public key e, corresponding to
ce=m° (mod n).
This can be done reasonably quickly, even for very large numbers, using modular exponentiation. Bob then transmits ¢ to Alice. Note that at least nine values of m will yield a ciphertext ¢ equal to m,[22] but this is very unlikely to occur in

practice.

Decryption [edit]
Alice can recover n1 from ¢ by using her private key exponent d by computing
¢t =(m%)*=m (mod n).

Given m1, she can recover the original message M by reversing the padding scheme.



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Encryption [edit]
After Bob obtains Alice's public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer m (strictly speaking, the padded plaintext), such that 0 < m < » by using an agreed-upon reversible protocol known as a padding scheme. He then

computes the ciphertext ¢, using Alice's public key e, corresponding to
c=m® (mod n).
This can be done reasonably quickly, even for very large numbers, using modular exponentiation. Bob then transmits ¢ to Alice. Note that at least nine values of m will yield a ciphertext ¢ equal to m,[22] but this is very unlikely to occur in

practice.

Decryption [edit] Modular Exponentiation

Alice can recover n1 from ¢ by using her private key exponent d by computing
¢t =(m%)*=m (mod n).

Given 1, she can recover the original message M by reversing the padding scheme.



Divides 9(‘ ‘ NI

f Divides

For integers x, v we say x|y (“x divides y") iff
there is an integer z such that xz = y.

L

“x 1s a divisor of y" or "x is a factor ofy means (essentially) the same
thTI"g aS—xX bIVIbe)y T
(“essentially” because of edge cases like when a number is negative or y = 0)

“The small number goes first”



Divides
(’7?%
Divides

For integers x,y we say x|y (“x divides y") iff

there is an integer z such that xz = y.

Which of these are true?
2|4 4|2 2| — 2

50 0|5 115



Divides

Divides

For integers x,y we say x|y (“x divides y") iff
there is an integer z such that xz = y.

Which of these are true?

2|4 True 4|2 False 2| —2 True

5|0 True 0|5 False 1|5 True



A useful theorem

The Division Theorem
Foreverya €Z,d € Z withd > 0

There exist unique integers q,r with 0 <r <d
Suchthata =dqg +r

Remember when non integers were still secret, you did division like this?

q is the "quotient”
r is the “remainder”



Unique

The Division Theorem
Foreverya €Z,d € Z withd > 0

There exist unique integers q,r with 0 <r <d
Suchthata =dqg +r

“unique” means “only one”....but be careful with how this word is used.

r IS unique, given a, d. — it still depends on a, d but once you've chosen
a and d

‘unique” is not saying Irva,d P(a,d,r)
It's saying Va,d3r[P(a,d,r) A|P(a,d,x) = x =r]]



A useful theorem

The Division Theorem
Foreverya €Z,d € Z withd > 0

There exist unique integers q,r with 0 <r <d
Suchthata =dqg +r

The q is the result of a/d (integer division) in Java
The r is the result of a%d in Java

That's slightly a lie, r is always non-
negative, Java's % operator sometimes
gives a negative number.




‘ Extra Set Practice



Extra Set Practice

ShowAUu(BNnC)=(AUB)N (AU ()

Proof:

Firse, we'll show: AU(BNC) S (AUB)N(AUC(C)
Let x be an arbitrary element ofA U (B N C).
Then by definition of U,n we have:
XEAV(x€EBAx€EC(D)

Applying the distributive law, we get
(xeAVxEB)A(x€EAVXxECD)

Applying the definition of union, we have:
x€(AUB)andx € (AU )
By definition of intersection we have x € (AU B) N (AU C).
SOAU(BNC)S(AUB)N(AUC).

Now we show (AUB)N(AUC) S AU(BNC(C)

Let x be an arbitrary element of (AU B) N (AU C).

By definition of intersection and union, (x EAVx € B)A(x EAVx €C)

Applying the distributive law, we have x e AV (x € BAx € ()

Applying the definitions of union and intersection, we have x € AU (B N C)

So(AUB)N(AuC)<c AUu(BnC().

Combining the two directions, since both sets are subsets of each other, we have AU(BNC) =(AUB)N (AU ()



Extra Set Practice

Suppose A € B. Show that P(A) € P(B).
Let A, B be arbitrary sets such that A € B.
Let X be an arbitrary element of P(A4).

By definition of powerset, X € A.

Since X € A, every element of X is also in A. And since A € B, we also
have that every element of X is also in B.

Thus X € P(B) by definition of powerset.

Since an arbitrary element of P(A4) is also in P(B), we have P(A) <
P(B).



Extra Set Practice

Disprove: f A€ (BUC)thenAS BorAcC

Consider A = {1,2,3}, B = {1,2},C = {3,4}.
BucC={1234}sowedohaveAS (BUC), butA< Band A & C.

When you disprove a Vv, you're just providing a counterexample (you're
showing 3) — your proof won't have “let x be an arbitrary element of A.”



