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Predicate Logic

3 Parts

1. Predicate — Function that outputs true or false.
Prime(x) = x is prime

2. Domain of Discourse — Set of possible inputs to a predicate.
E.g. Integers

3. Quantifiers — A statement about when a predicate is true
For all: v There exists: 3
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. D : . Predicate Definitions
Tra n S | a t I O n {C;)trsnam of Discourse } £Fluffy(x) = x IS ﬂuffy J

— Happy(x) := x is happy

If a cat is flufty, it is happy.
for o\l care x, & ¥ ¢ Hu(’#—(j) Atin X l/\ap)oa\

Fx C E\MQ{)(){) — Rappy (XD




. Domain of Discourse (Predicate Definitions
Tra NS | atl on Animals Cat(x) = x is a cat

Fluffy(x) := x is fluffy

Happy(x) := x is happy P

It a cat is flufty, it is happy. t ﬁmﬁ"[j\:\ ~
— StvieNON

Yy ( Cax G A Fluwbfy (x))— Haqo;o\ﬂ&()>

YO y (EM(Q /\ (F\MP\‘:](X\ — HM”Y’“}(*))>




~ | Nested Quantifiers



(Predicate Definitions D)
Domain of Discourse Walks(x, y) := x walks y
Exa M p | S 1 {Mammals } — Friends(x, y) := x and y are friends
—~Human(x) := x is a human

\Dog(x) := x is a dog Y

Humans are not friends with each other.
o all human s X —}\/\;Lﬁ are N0t Brunde with all humamns 9

V)( V\} ( (HV‘W\OW\[Y) n H\Avmam(q)>_—>ﬁ Frwolslx,y))

bov (Hwman £ : Humans) -
$ov (Muway lf Humans ) :

assevy V EyviundcOx, U)



EXa m p | e ) Lac;m?;n of Discourse

~

—Walks(x, y) := x walks y

Predicate Definitions
} +-Friends(x, y) :== x and y are friends

\f x v

~4—Human(x) := x is a human
—<Dog(x) := x is a dog

J

Alllhumans are friends with the dogs that they walk.
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(Predicate Definitions )
Domain of Discourse Walks(x, y) := x walks y
Exa M p | S 3 {Mammals } Friends(x,y) := x and y are friends
Human(x) := x is a human
kDog(x) = x is a dog Y
Every human walks a dog.

e V)( ([_\:\V\VV\(IV’/YBX __4[2; :2 (Y)Og(‘j\ N \(\,alkg()(\‘d@
E VX’}_& ( Human( ) ——s(Dog(@ /] \/\M)ks[x,w»




Predicate Definitions )
Domain of Discourse Walks(x, y) := x walks y
Exa M p | S 3 {I\/Iammals 1 Friends(x,y) := x and y are friends
Human(x) := x is a human

\Dog(x) := x is a dog -

Every human walks a dog.

X{Vxﬂy(Human(x) A Dog(y) A Walks(x, y))
_)jzﬁ VxIy ((Human(x) A Dog(y)) — Walks(x, y)) Y- Kabp i

C) Vx3y (Human(x) - (Dog(y) A Walks(x, y)))

) Vx3y (Human(x) A (Dog(y) — Walks(x, y)))

Poll Everywhere
pollev.com/anjalia




(Predicate Definitions )
Domain of Discourse Walks(x, y) := x walks y
Exa m p | S 4 {Mammals } Friends(x, y) := x and y are friends
Human(x) := x is a human

\Dog(x) := x is a dog Y

Every human walks exactly one dog.

¢y ( Human(y) — %%Cboq(@ A WAKSOGY) A
Y2 (Bo6() n (2 7yp) > THalkss?)
)V/Z—[(ij(%) A\ wa\zcs(x,z->)—%z:@






Quantifier Order

Translate to logic. The domain of discourse is people. The predicate Friends(x,y)
is defined as x and y are friends.

Everyone is friends with someone.  Someone is friends with everyone.
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Quantifier Order

Vx3y P(x,y) means _*ov evew) X, Hurt i Q Y Hhat+ vake
P(y\\o) Wy \t9 coul g \/artﬁ)

=

3yVx P(x,y) means _+\Wre & Sevnd S?@C'\ﬂtl W {hnat
maxes  Qlx, ‘fp %Vmeo tor evevy X
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Quantifier Order

Let our domain of discourse be
{A,B,C, D, E}

And our proposition P(x,y) be
given by the table.

What should we look for in the
table?

AxVy P(x,y)

Vx3y P(x,y)
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Quantifier Order

Let our domain of discourse be
{A,B,C, D, E}

And our proposition P(x,y) be
given by the table.

What should we look for in the
table?

AxVy P(x,y)

A row, where every entry is T
Vx3y P(x,y)

In every row there must be a T




I~ Negating Quantifiers



VoA - quvﬂn {

DeMorgan’s Law for Quantifiers oreditaie: Greln

Consider the following sentences:
« There does not exist a green penguin. 1Y C Greantxy)

» Every penguin is a color other than green. v/ (4 Gveen (x) )

Are they logically equivalent? , - Yet?



DeMorgan’s Law for Quantifiers

Consider the following sentences:
« Not every person can dance. 1 ¥x (oan(x))
» There is a person that cannot dance. 4 g ( ~Dance(x) \

Are they logically equivalent? -~ Yegs.



DeMorgan’s Law for Quantifiers

VX P(.X') = dx —|P(X)
—3x P(x) = Vx =P(x)

.e. to negate an expression with a quantifier:
1. Switch the quantifier (V becomes 3, and vice versa).

2. Negate the expression inside.



Example 1

Translate to predicate logic & rewrite using DeMorgan’s Law.

There is no integer which is prime and even.
7 A (Primul) A €Ven (x) )

= ¥ x~ (Prime(x) A even (x))
= VY(WPY.\NCY) V "Ié\lef/l[l/>>

AN mHgers ove nOy  Erime ov
ot even.



Example 2

Translate to predicate logic & rewrite using DeMorgan’s Law.

There is no integer greater than or equal to every other integer.
1A% Yy (x=2 y)
= X - \q’xﬂ (x> té)

Wiegey greay

| an
AN nYeoeYs have an From



I~ Predicate Logic Equivalence



Motivation

« We saw with the last two examples that there may be different

predicate logic expressions that have the same meaning

« We can prove logical equivalence of Predicate Logic statements like

we did for Propositional Logic

« Same equivalence rules still apply, in addition to DeMorgan’s Law for
Quantifiers



Proving Predicate Logic Equivalence

“No odd integer is equal to an even integer.”
Alice translated this as: __ 1 3 K 316 ( 04d(x) A €\MW(\(}4} N (x 7(4)>

Bob translated this as: VXV% ( @ddﬁﬂ /\éuev(@ ) — (X?f\j»

Prove that these translations are logically equivalent.



Proving Predicate Logic Equivalence

—3x3y (0dd(x) A Even(y) A (x = y))

V x V\.ﬁ = (@dd(\)ﬂ N\ Ewn[,ﬂb/\ ()(;ij DQ(MUVC’QM‘J (XZ)
= )OLXV\'a- (—1 (Odd(X) /\E\ler\(y)) V ‘7%)) De MDanw'\Y

\)l

= Vx“d\% ( 2 (0dd(x) A Even(y)) v (Yiﬁ)) be€ o Z

= VxVy ((Odd(x) AEven(y)) - (x # y)) Law ot Imp-



Proving Predicate Logic Equivalence
-vx (P(x) - 3y Q(x,¥))

= —,ngs% ( PO &(X\\ﬁ>

= aXV\é ~ (ex) > @(Y\\j))

= IX¥ 1 P(%) v &(x,\j))
":\)(v\& ( 2P0 A 3 QUAYY)

Oe Mt Ganls (x2)

LA-w oF lmD.
De quom'f Law

\\

= EIx‘v’y(P(x) A =Q(x, y)) Douige NQ(%M{M



Anonymous Feedback

https://tinyurl.com/cse311feedback
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