
CSE 311: Foundations of Computing I Spring 2023

Quiz Section 10: Cardinality and Computability – Solutions

Task 1 – Cardinality

a) You are a pirate. You begin in a square on a 2D grid that is infinite in all directions. In other words,
wherever you are, you may move up, down, left, or right. Some single square on the infinite grid has
treasure on it. Find a way to ensure you find the treasure in finitely many moves.

Explore the square you are currently on. Explore the unexplored perimeter of the explored
region until you find the treasure (your path will look a bit like a spiral).

b) Prove that t3x : x P Nu is countable.

We can enumerate the set as follows:

fp0q “ 0

fp1q “ 3

fp2q “ 6

fpiq “ 3i

Since every natural number appears on the left, and every number in S appears on the
right, this enumeration spans both sets, so S is countable.

c) Prove that the set of irrational numbers is uncountable.
Hint: Use the fact that the rationals are countable and that the reals are uncountable.

We first prove that the union of two countable sets is countable. Consider two arbitrary
countable sets C1 and C2. We can enumerate C1 YC2 by mapping even natural numbers
to C1 and odd natural numbers to C2.
Now, assume that the set of irrationals is countable. Then the reals would be countable,
since the reals are the union of the irrationals (countable by assumption) and the rationals
(countable). However, we have already shown that the reals are uncountable, which is a
contradiction. Therefore, our assumption that the set of irrationals is countable is false,
and the irrationals must be uncountable.
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d) Prove that PpNq is uncountable.

Assume for the sake of contradiction that PpNq is countable.
This means we can define an enumeration of elements Si in P.
Let si be the binary set representation of Si in N. For example, for the set t0, 1, 2u, the
binary set representation would be 111000 . . .
We then construct a new subset X Ă N such that xris “„ siris (that is, xris is 1 if siris
is 0, and xris is 0 otherwise).
Note that X is not any of Si, since it differs from Si on the ith natural number. However,
X still represents a valid subset of the natural numbers, which means our enumeration is
incomplete, which is a contradiction. Since the above proof works for any listing of PpNq,
no listing can be created for PpNq, and therefore PpNq is uncountable.

Task 2 – Countable Unions

a) Show that N ˆ N is countable.
Hint: How did we show that the rationals were countable?

We use dovetailing to create a sequence of elements of N ˆ N that includes the entirety
of N ˆ N.
For a fixed integer k ě 2, consider subset Sk of N ˆ N consisting of the elements pa, bq
such that a ` b “ k. There can be at most k ´ 1 such elements because for each value
of a “ 1, 2, . . . , k ´ 1, there can only be one possible value for b, namely k ´ a. Thus, if
we create a sequence consisting of all the elements of S2, then S3, then S4, etc. because
each set is of finite size, any pair pa, bq P N ˆ N will eventually show up in this sequence
in Sa`b.
Thus, because we can enumerate the elements of N ˆ N, it must be countable.

b) Show that the countable union of countable sets is countable. That is, given a collection of sets
S1, S2, S2, . . . such that Si is countable for all i P N, show that

S “ S1 Y S2 Y ¨ ¨ ¨ “ tx : x P Si for some iu

is countable.
Hint: Find a way of labeling the elements and see if you can apply the previous part to construct an
onto function from N to S.

Because each Si is countable, the elements can be enumerated. Let the elements of Si

be ai,1, ai,2, ai,3, . . .. Next, because N ˆ N is countable, there exists an onto function
f : N Ñ N ˆ N. Then define the function g : N Ñ S as follows. For each n P N, let
pin, jnq “ fpnq. The define gpnq to be ain,jn .
I claim g is onto. Indeed, let ai,j be an arbitrary element of S. Because f is onto, there
exists an n such that fpnq “ pi, jq. Then gpnq “ ai,j . This shows g is onto and thus S
is countable.
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Task 3 – Computability

Let Σ “ t0, 1u. Prove that the set of palindromes over alphabet Σ is decidable.

We can implement the function that takes a string as input and reverses that string, using
the recursive definition of string reverse given in class. So on input x we run that reversing
program to create the string y “ xR. Then we compare x against y character by character
and output yes iff we find that x “ y.

Task 4 – Review: Strong Induction

Define a sequence of positive integers an with n ě 1 as follows:

a1 “ 1

a2 “ 2

a3 “ 5

an “ 3an´1 ` 4an´2 ` an´3 for n ě 4

Prove that an ě 4n´2 for all integers n ě 1.

We will proceed by strong induction.
Let P pnq be “an ě 4n´2” . We will prove that P pnq holds for all integers n ě 1.

Base Cases. When n “ 1, by definition of a, we have an “ a1 “ 1. Also, 4n´2 “ 4´1 “

1{4. Since 1 ě 1{4 we have P p1q holds. When n “ 2, by definition of a, we have
an “ a2 “ 2. Also, 4n´2 “ 42´2 “ 40 “ 1. Since 2 ě 1, it follows that P p2q holds.
When n “ 3, by definition of a, we have an “ a3 “ 5. Also, 4n´2 “ 43´2 “ 41 “ 4.
Since 5 ě 4, it follows that P p3q holds.

Inductive Hypothesis. Let k be some integer with k ě 3, and and suppose that P pjq

holds for all j such that 1 ď j ď k.

Inductive Step. Goal: Show P pk ` 1q. Or, simplifying, show ak`1 ě 4k´1.
Since k ě 3, we have k ` 1 ě 4.
We then calculate:

ak`1 “ 3ak ` 4ak´1 ` ak´2 by def of a, since k ` 1 ě 4

ě 3 ¨ 4k´2 ` 4 ¨ 4k´3 ` 4k´4 by IH with j “ k, k ´ 1, k ´ 2 ě 1 (since k ě 3 )
“ 3 ¨ 4k´2 ` 4k´2 ` 4k´4

“ 4 ¨ 4k´2 ` 4k´4

“ 4k´1 ` 4k´4

ě 4k´1

Thus P pk ` 1q holds.
Conclusion. By strong induction, P pnq holds for all integers n ě 1.
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