
CSE 311: Foundations of Computing I Spring 2023

Quiz Section 7: Induction, Regular Expressions – Solutions

Task 1 – Walk the Dawgs

Suppose that a dog walker takes care of n ě 12 dogs. The dog walker is not a strong person, and will
walk dogs in groups of 3 or 7 at a time (every dog gets walked exactly once). Prove that the dog walker
can always split the n dogs into groups of 3 dogs or 7 dogs.

Let P pnq be “a group with n dogs can be split into groups of 3 dogs or 7 dogs.” We will
prove P pnq for all natural numbers n ě 12 by strong induction.

Base Cases n “ 12, 13, 14, or 15: 12 = 3 + 3 + 3 + 3, 13 = 3 + 7 + 3, 14 = 7 + 7, So
P p12q, P p13q, and P p14q hold.

Inductive Hypothesis: Assume that P p12q, . . . , P pkq hold for some arbitrary k ě 14.
Inductive Step: Goal: Show k ` 1 dogs can be split into groups of 3 dogs or 7 dogs.

We first form one group of 3 dogs out of the k ` 1 dogs. Then we can divide the
remaining k ´ 2 dogs into groups of 3 or 7 by the assumption P pk ´ 2q. (Note that
k ě 14 and so k ´ 2 ě 12; thus, P pk ´ 2q is among our assumptions P p12q, . . . ,
P pkq.)

Conclusion: P pnq holds for all integers n ě 12 by by principle of strong induction.

Task 2 – Seeing double

Consider the following recursive definition of strings.
Basis Step: "" is a string
Recursive Step: If X is a string and c is a character then appendpc,Xq is a string.

Recall the following recursive definition of the function len:

lenp""q “ 0

lenpappendpc,Xqq “ 1 ` lenpXq

Now, consider the following recursive definition:

doublep""q “ ""
doublepappendpc,Xqq “ appendpc, appendpc, doublepXqqq.

Prove that for every string X, lenpdoublepXqq “ 2 lenpXq.

For a string X, let PpXq be “lenpdoublepXqq “ 2 lenpXq. We prove PpXq for all strings X
by structural induction.

Base Case. We show Pp""q holds. By definition lenpdoublep""qq “ lenp""q “ 0. On the
other hand, 2lenp""q “ 0 as desired.

1

Induction Hypothesis. Suppose PpXq holds for some arbitrary string X.
Induction Step. We show that Ppappendpc,Xqq holds for any character c.

lenpdoublepappendpc,Xqqq “ lenpappendpc, appendpc, doublepXqqqq [By Definition of double]
“ 1 ` lenpappendpc, doublepXqqq [By Definition of len]
“ 1 ` 1 ` lenpdoublepXqq [By Definition of len]
“ 2 ` 2lenpXq [By IH]
“ 2p1 ` lenpXqq [Algebra]
“ 2plenpappendpc,Xqqq [By Definition of len]

This proves P pappendpc,Xqq.

Thus, P pXq holds for all strings X by structural induction.

2

Task 3 – Leafy Trees

Consider the following definition of a (binary) Tree:
Basis Step: ‚ is a Tree.
Recursive Step: If L is a Tree and R is a Tree then TreepL,Rq is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leavesp‚q “ 1

leavespTreepL,Rqq “ leavespLq ` leavespRq

Also, recall the definition of size on trees:

sizep‚q “ 1

sizepTreepL,Rqq “ 1 ` sizepLq ` sizepRq

Prove that leavespT q ě sizepT q{2 ` 1{2 for all Trees T .

For a tree T , let P be leavespT q ě sizepT q{2`1{2. We prove P for all trees T by structural
induction on T .

Base Case (T = ‚): By definition of leavesp‚q, leavesp‚q “ 1 and sizep‚q “ 1. So,
leavesp‚q “ 1 ě 1{2 ` 1{2 “ sizep‚q{2 ` 1{2, so P p‚q holds.

Inductive Hypothesis: Suppose P pLq and P pRq hold for some arbitrary trees L,R.

Inductive Step: Goal: Show that P pTreepL,Rqq holds.

leavespTreepL,Rqq “ leavespLq ` leavespRq [By Definition of leaves]
ě psizepLq{2 ` 1{2q ` psizepRq{2 ` 1{2q [By IH]
“ p1{2 ` sizepLq{2 ` sizepRq{2q ` 1{2 [By Algebra]

“
1 ` sizepLq ` sizepRq

2
` 1{2 [By Algebra]

“ sizepT q{2 ` 1{2 [By Definition of size]

This proves P pTreepL,Rqq.
Conclusion: Thus, P pT q holds for all trees T by structural induction.

3

Task 4 – Reversing a Binary Tree

Consider the following definition of a Tree that has integer values at its nodes in which each node has
at most two children.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Treepx, L,Rq is a Tree.

The sum function returns the sum of all elements in a Tree.

sumpNilq “ 0

sumpTreepx, L,Rqq “ x ` sumpLq ` sumpRq

The following recursively defined function produces the mirror image of a Tree.

reversepNilq “ Nil
reversepTreepx, L,Rqq “ Treepx, reversepRq, reversepLqq

Show that, for all Trees T that

sumpT q “ sumpreversepT qq

For a Tree T , let P pT q be “sumpT q “ sumpreversepT qq”. We show P pT q for all Trees T
by structural induction.

Base Case: By definition we have reversepNilq “ Nil. Applying sum to both sides we get
sumpNilq “ sumpreversepNilqq, which is exactly P pNilq, so the base case holds.

Inductive Hypothesis: Suppose P pLq and P pRq hold for some arbitrary Trees L and R.

Inductive Step: Let x be an arbitrary integer. Goal: Show P pTreepx, L,Rqq holds.
We have,

sumpreversepTreepx, L,Rqqq “ sumpTreepx, reversepRq, reversepLqqq [Definition of reverse]
“ x ` sumpreversepRqq ` sumpreversepLqq [Definition of sum]
“ x ` sumpRq ` sumpLq [Inductive Hypothesis]
“ x ` sumpLq ` sumpRq [Commutativity]
“ sumpTreepx, L,Rqq [Definition of sum]

This shows P pTreepx, L,Rqq.
Conclusion: Therefore, P pT q holds for all Trees T by structural induction.

4

Task 5 – Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties.
Briefly justify that your solution is correct.

a) Binary strings of even length.

Basis: ε P S.
Recursive Step: If x P S, then x00, x01, x10, x11 P S.

“Brief ” Justification: We will show that x P S iff x has even length (i.e.,|x|= 2n for
some n P N). (Note: “brief” is in quotes here. Try to write shorter explanations in your
homework assignment when possible!)
Suppose x P S. If x is the empty string, then it has length 0, which is even. Otherwise,
x is built up from the empty string by repeated application of the recursive step, so it is
of the form x1x2...xn, where each xi P t00, 01, 10, 11u. In that case, we can see that
|x|=|x1|+|x2|+···+|xn|= 2n, which is even. Now, suppose that x has even length. If
it’s length is zero, then it is the empty string, which is in S. Otherwise, it has length 2n for
some n ą 0, and we can write x in the form x1x2...xn, where each xi P t00, 01, 10, 11u

has length 2. Hence, we can see that x can be built up from the empty string by applying
the recursive step with x1, then x2, and so on up to xn, which shows that x P S.

b) Binary strings not containing 10.

If the string does not contain 10, then the first 1 in the string can only be followed by
more 1s. Hence, it must be of the form 0m1n for some m,n P N.
Basis: ε P S.

Recursive Step: If x P S, then 0x P S and x1 P S.
Brief Justification: The empty string satisfies the property, and the recursive step cannot
place a 0 after a 1 since it only adds 0s on the left. Hence, every string in S satisfies the
property.
In the other direction, from our discussion above, any string of this form can be written
as y “ 0m1n for some m,n P N. We can build up the string y from the empty string
by applying the rule x Ñ 0x m times and then applying the rule x Ñ x1 n times. This
shows that the string y is in S.

c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

These must be of the form 0m1n for some m,n P N with m ď n. We can ensure that by
pairing up the 0s with 1s as they are added:
Basis: ε P S.
Recursive Step: If x P S, then 0x1 P S and x1 P S.
Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only
add 0s at the front. And since every 0 comes with a 1, we always have at least as many
1s as 0s.

5

In the other direction, from our discussion above, any string of this form can be written
as xy, where x “ 0m1m and y “ 1nm, since n ě m. We can build up the string x from
the empty string by applying the rule x Ñ 0x1 m times and then produce the string xy
by applying the rule x Ñ x1 nm times, which shows that the string is in S.

d) Binary strings containing at most two 0s and at most two 1s.

This is the set of all binary strings of length at most 4 except for these:

000, 1000, 0100, 0010, 0001, 0000, 111, 0111, 1011, 1101, 1110, 1111

Since this is a finite set, we can define it recursively using only basis elements and no
recursive step.

Task 6 – Regular Expressions

a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

0 Y pp1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8 Y 9qp0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8 Y 9q˚q

b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

0 Y pp1 Y 2qp0 Y 1 Y 2q˚0q

c) Write a regular expression that matches all binary strings that contain the substring “111”, but not
the substring “000”.

p01 Y 001 Y 1˚q˚p0 Y 00 Y εq111p01 Y 001 Y 1˚q˚p0 Y 00 Y εq

6

