Quiz Section 7: Induction, Regular Expressions - Solutions

Task 1 - Walk the Dawgs

Suppose that a dog walker takes care of $n \geqslant 12$ dogs. The dog walker is not a strong person, and will walk dogs in groups of 3 or 7 at a time (every dog gets walked exactly once). Prove that the dog walker can always split the n dogs into groups of 3 dogs or 7 dogs.

Let $P(n)$ be "a group with n dogs can be split into groups of 3 dogs or 7 dogs." We will prove $P(n)$ for all natural numbers $n \geqslant 12$ by strong induction.

Base Cases $n=12,13,14$, or $15: 12=3+3+3+3,13=3+7+3,14=7+7$, So $P(12), P(13)$, and $P(14)$ hold.
Inductive Hypothesis: Assume that $P(12), \ldots, P(k)$ hold for some arbitrary $k \geqslant 14$.
Inductive Step: Goal: Show $k+1$ dogs can be split into groups of 3 dogs or 7 dogs.
We first form one group of 3 dogs out of the $k+1$ dogs. Then we can divide the remaining $k-2$ dogs into groups of 3 or 7 by the assumption $P(k-2)$. (Note that $k \geqslant 14$ and so $k-2 \geqslant 12$; thus, $P(k-2)$ is among our assumptions $P(12), \ldots$, $P(k)$.)

Conclusion: $P(n)$ holds for all integers $n \geqslant 12$ by by principle of strong induction.

Task 2 - Seeing double

Consider the following recursive definition of strings.
Basis Step: "" is a string
Recursive Step: If X is a string and c is a character then append (c, X) is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\text { len }(" ") & =0 \\
\text { len }(\operatorname{append}(c, X)) & =1+\operatorname{len}(X)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\text { double("") } & =" " \\
\text { double(append }(c, X)) & =\operatorname{append}(c, \operatorname{append}(c, \text { double }(X))) .
\end{array}
$$

Prove that for every string X, len $($ double $(X))=2 \operatorname{len}(X)$.
For a string X, let $\mathrm{P}(X)$ be "len $(\operatorname{double}(X))=2 \operatorname{len}(X)$. We prove $\mathrm{P}(X)$ for all strings X by structural induction.

Base Case. We show $\mathrm{P}(" \mathrm{"})$ holds. By definition len(double("")) $=\operatorname{len}(" \mathrm{"})=0$. On the other hand, $2 \operatorname{len}(" ")=0$ as desired.

Induction Hypothesis. Suppose $\mathrm{P}(X)$ holds for some arbitrary string X.
Induction Step. We show that $\mathrm{P}(\operatorname{append}(c, X))$ holds for any character c.

$$
\begin{aligned}
\operatorname{len}(\operatorname{double}(\operatorname{append}(c, X))) & =\operatorname{len}(\operatorname{append}(c, \operatorname{append}(c, \operatorname{double}(X)))) & & {[\text { By Definition of double] }} \\
& =1+\operatorname{len}(\operatorname{append}(c, \operatorname{double}(X))) & & {[\text { By Definition of len }] } \\
& =1+1+\operatorname{len}(\operatorname{double}(X)) & & {[\text { By Definition of len }] } \\
& =2+2 \operatorname{len}(X) & & {[\text { By IH }] } \\
& =2(1+\operatorname{len}(X)) & & {[\text { Algebra }] } \\
& =2(\operatorname{len}(\operatorname{append}(c, X))) & & {[\text { By Definition of len }] }
\end{aligned}
$$

This proves $P(\operatorname{append}(c, X))$.
Thus, $P(X)$ holds for all strings X by structural induction.

Task 3 - Leafy Trees

Consider the following definition of a (binary) Tree:
Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\operatorname{leaves}(\bullet) & =1 \\
\operatorname{leaves}(\operatorname{Tree}(L, R)) & =\operatorname{leaves}(L)+\operatorname{leaves}(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geqslant \operatorname{size}(T) / 2+1 / 2$ for all Trees T.
For a tree T, let P be leaves $(T) \geqslant \operatorname{size}(T) / 2+1 / 2$. We prove P for all trees T by structural induction on T.

Base Case ($\mathbf{T}=\bullet$): By definition of leaves (\bullet), leaves $(\bullet)=1$ and $\operatorname{size}(\bullet)=1$. So, leaves $(\bullet)=1 \geqslant 1 / 2+1 / 2=\operatorname{size}(\bullet) / 2+1 / 2$, so $P(\bullet)$ holds.
Inductive Hypothesis: Suppose $P(L)$ and $P(R)$ hold for some arbitrary trees L, R.
Inductive Step: Goal: Show that $P(\operatorname{Tree}(L, R))$ holds.

$$
\begin{aligned}
\operatorname{leaves}(\operatorname{Tree}(L, R)) & =\operatorname{leaves}(L)+\operatorname{leaves}(R) & & \text { [By Definition of leaves] } \\
& \geqslant(\operatorname{size}(L) / 2+1 / 2)+(\operatorname{size}(R) / 2+1 / 2) & & {[\text { By IH }] } \\
& =(1 / 2+\operatorname{size}(L) / 2+\operatorname{size}(R) / 2)+1 / 2 & & {[\text { By Algebra }] } \\
& =\frac{1+\operatorname{size}(L)+\operatorname{size}(R)}{2}+1 / 2 & & {[\text { By Algebra }] } \\
& =\operatorname{size}(T) / 2+1 / 2 & & {[\text { By Definition of size }] }
\end{aligned}
$$

This proves $P(\operatorname{Tree}(L, R))$.
Conclusion: Thus, $P(T)$ holds for all trees T by structural induction.

Task 4 - Reversing a Binary Tree

Consider the following definition of a Tree that has integer values at its nodes in which each node has at most two children.

Basis Step Nil is a Tree.
Recursive Step If L is a Tree, R is a Tree, and x is an integer, then $\operatorname{Tree}(x, L, R)$ is a Tree.
The sum function returns the sum of all elements in a Tree.

$$
\begin{array}{ll}
\operatorname{sum}(\operatorname{Nil}) & =0 \\
\operatorname{sum}(\operatorname{Tree}(x, L, R)) & =x+\operatorname{sum}(L)+\operatorname{sum}(R)
\end{array}
$$

The following recursively defined function produces the mirror image of a Tree.

$$
\begin{array}{ll}
\text { reverse(Nil) } & =\text { Nil } \\
\text { reverse }(\operatorname{Tree}(x, L, R)) & =\operatorname{Tree}(x, \text { reverse }(R) \text {, reverse }(L))
\end{array}
$$

Show that, for all Trees T that

$$
\operatorname{sum}(T)=\operatorname{sum}(\operatorname{reverse}(T))
$$

For a Tree T, let $P(T)$ be "sum $(T)=\operatorname{sum}($ reverse $(T))$ ". We show $P(T)$ for all Trees T by structural induction.

Base Case: By definition we have reverse(Nil) = Nil. Applying sum to both sides we get $\operatorname{sum}(\mathrm{Nil})=\operatorname{sum}($ reverse $(\mathrm{Nil}))$, which is exactly $P(\mathrm{Nil})$, so the base case holds.
Inductive Hypothesis: Suppose $P(L)$ and $P(R)$ hold for some arbitrary Trees L and R.
Inductive Step: Let x be an arbitrary integer. Goal: Show $P(\operatorname{Tree}(x, L, R))$ holds.
We have,

$$
\begin{aligned}
\operatorname{sum}(\operatorname{reverse}(\operatorname{Tree}(x, L, R))) & =\operatorname{sum}(\operatorname{Tree}(x, \operatorname{reverse}(R), \operatorname{reverse}(L))) & & \text { [Definition of reverse] } \\
& =x+\operatorname{sum}(\operatorname{reverse}(R))+\operatorname{sum}(\operatorname{reverse}(L)) & & \text { [Definition of sum] } \\
& =x+\operatorname{sum}(R)+\operatorname{sum}(L) & & \text { [Inductive Hypothesis] } \\
& =x+\operatorname{sum}(L)+\operatorname{sum}(R) & & \text { [Commutativity] } \\
& =\operatorname{sum}(\operatorname{Tree}(x, L, R)) & & \text { [Definition of sum] }
\end{aligned}
$$

This shows $P($ Tree $(x, L, R))$.
Conclusion: Therefore, $P(T)$ holds for all Trees T by structural induction.

Task 5 - Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.
a) Binary strings of even length.

Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $x 00, x 01, x 10, x 11 \in S$.
"Brief" Justification: We will show that $x \in S$ iff x has even length (i.e., $|\mathrm{x}|=2 \mathrm{n}$ for some $n \in \mathbb{N}$). (Note: "brief" is in quotes here. Try to write shorter explanations in your homework assignment when possible!)
Suppose $x \in S$. If x is the empty string, then it has length 0 , which is even. Otherwise, x is built up from the empty string by repeated application of the recursive step, so it is of the form $x_{1} x_{2} \ldots x_{n}$, where each $x_{i} \in\{00,01,10,11\}$. In that case, we can see that $|\mathrm{x}|=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|=2 \mathrm{n}$, which is even. Now, suppose that x has even length. If it's length is zero, then it is the empty string, which is in S. Otherwise, it has length 2 n for some $n>0$, and we can write x in the form $x_{1} x_{2} \ldots x_{n}$, where each $x_{i} \in\{00,01,10,11\}$ has length 2 . Hence, we can see that x can be built up from the empty string by applying the recursive step with x_{1}, then x_{2}, and so on up to x_{n}, which shows that $x \in S$.
b) Binary strings not containing 10 .

If the string does not contain 10 , then the first 1 in the string can only be followed by more 1 s . Hence, it must be of the form $0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$.
Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $0 x \in S$ and $x 1 \in S$.
Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a 1 since it only adds 0 s on the left. Hence, every string in S satisfies the property.
In the other direction, from our discussion above, any string of this form can be written as $y=0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$. We can build up the string y from the empty string by applying the rule $x \rightarrow 0 x \mathrm{~m}$ times and then applying the rule $x \rightarrow x 1 \mathrm{n}$ times. This shows that the string y is in S.
c) Binary strings not containing 10 as a substring and having at least as many 1 s as 0 s .

These must be of the form $0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$ with $m \leqslant n$. We can ensure that by pairing up the $0 s$ with 1 s as they are added:
Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $0 x 1 \in S$ and $x 1 \in S$.
Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add 0 s at the front. And since every 0 comes with a 1 , we always have at least as many 1 s as 0 s .

In the other direction, from our discussion above, any string of this form can be written as $x y$, where $x=0^{m} 1^{m}$ and $y=1^{n m}$, since $n \geqslant m$. We can build up the string x from the empty string by applying the rule $x \rightarrow 0 x 1 \mathrm{~m}$ times and then produce the string $x y$ by applying the rule $x \rightarrow x 1 \mathrm{~nm}$ times, which shows that the string is in S .
d) Binary strings containing at most two 0 s and at most two 1 s .

This is the set of all binary strings of length at most 4 except for these:

$$
000,1000,0100,0010,0001,0000,111,0111,1011,1101,1110,1111
$$

Since this is a finite set, we can define it recursively using only basis elements and no recursive step.

Task 6 - Regular Expressions

a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

$$
0 \cup\left((1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^{*}\right)
$$

b) Write a regular expression that matches all base-3 numbers that are divisible by 3 .

$$
0 \cup\left((1 \cup 2)(0 \cup 1 \cup 2)^{*} 0\right)
$$

c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring " 000 ".

$$
\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon) 111\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon)
$$

