
CSE 311: Foundations of Computing I Spring 2023

Quiz Section 6: Ordinary, Strong, and Structural Induction
– Solutions

Task 1 – Midterm Review: Translation

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- soypxq is true iff x contains soy milk.

- wholepxq is true iff x contains whole milk.

- sugarpxq is true iff x contains sugar

- decafpxq is true iff x is not caffeinated.

- veganpxq is true iff x is vegan.

- RobbieLikespxq is true iff Robbie likes the drink x.

Translate each of the following statements into predicate logic. You may use quantifiers, the predicates
above, and usual math connectors like “ and ‰.

a) Coffee drinks with whole milk are not vegan.

@xpwholepxq Ñ  veganpxqq.

b) Robbie only likes one coffee drink, and that drink is not vegan.

Dx@ypRobbieLikespxq ^  Veganpxq ^ rRobbieLikespyq Ñ x “ ysq

OR DxpRobbieLikespxq ^  Veganpxq ^ @yrRobbieLikespyq Ñ x “ ysq

c) There is a drink that has both sugar and soy milk.

Dxpsugarpxq ^ soypxqq

Translate the following symbolic logic statement into a (natural) English sentence. Take advantage
of domain restriction.

@xprdecafpxq ^ RobbieLikespxqs Ñ sugarpxqq

Every decaf drink that Robbie likes has sugar.
Statements like “For every decaf drink, if Robbie likes it then it has sugar” are equivalent,
but only partially take advantage of domain restriction.
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Task 2 – Casting Out Nines

Let m P N. This problem proves that if 9|m, then the sum of the digits of m is a multiple of 9.
(It actually proves a bit more.) In order to state this one needs the base 10 representation of m.
Write m “ pdndn´1 ¨ ¨ ¨ d1d0q10 where d0, . . . , dn are the base-10 digits of m; that is, each d0, . . . , dn P
t0, 1, 2, . . . , 9u and m “

řn
i“0 di10

i.
Prove that casting out nines works for all m P N by induction on the number of digits of m by

showing that m and the sum of its digits are equivalent modulo 9. We can write this using summation
notation as: Prove that for all n P N,

řn
i“0 di10

i ”
řn

i“0 di pmod 9q for all d0, . . . , dn P t0, 1, 2, . . . , 9u.
(In other words, prove that for all n P N, for all d0, . . . , dn P t0, 1, 2, . . . , 9u,

d0 ` 101 ¨ d1 ` 102 ¨ d2 ` ¨ ¨ ¨ ` 10n ¨ dn ” d0 ` d1 ` d2 ` ¨ ¨ ¨ ` dn pmod 9q.

Let P pnq be “
řn

i“0 di10
i ”

řn
i“0 di pmod 9q for all d0, . . . , dn P t0, 1, 2, . . . , 9u”. We prove

P pnq for all n P N by induction.

Base Case (n “ 0): Observe that
ř0

i“0 di10
i “ d010

0 “ d0 “
ř0

i“0 di since 100 “ 1.
Therefore

ř0
i“0 di10

i ”
ř0

i“0 di pmod 9q and hence P p0q holds.
Inductive Hypothesis: Assume that P pkq is true for some arbitrary k P N.

That is, we have
řk

i“0 di10
i ”

řk
i“0 di pmod 9q for all d0, . . . , dk P t0, 1, 2, . . . , 9u.

Inductive Step: We now prove P pk ` 1q:
Let d0, . . . , dk`1 P t0, 1, 2, . . . , 9u. We now have a couple of options for how to pro-
ceed:

Option 1: (Applying the IH using the larger terms.)
k`1
ÿ

i“0

di10
i “ d0 `

k`1
ÿ

i“1

di10
i “ d0 ` 10ˆ

k`1
ÿ

i“1

di10
i´1 “ d0 ` 10ˆ

k
ÿ

j“0

dj`110
j .

Consider the number with digits d1
0 “ d1, . . . , d

1
k “ dk`1. Then, by the inductive

hypothesis we have
řk

j“0 d
1
j10

j ”
řk

j“0 d
1
j pmod 9q, so we have

řk
j“0 dj`110

j ”
řk

j“0 dj`1 pmod 9q or equivalently, using the index i “ j ` 1,

k`1
ÿ

i“1

di10
i´1 ”

k`1
ÿ

i“1

di pmod 9q.

Since 10 ” 1 pmod 9q, by the product rule we have

10ˆ
k`1
ÿ

i“1

di10
i´1 ”

k`1
ÿ

i“1

di pmod 9q

and so
k`1
ÿ

i“0

di10
i ” d0 ` 10ˆ

k`1
ÿ

i“1

di10
i´1 ” d0 `

k`1
ÿ

i“1

di pmod 9q

”

k`1
ÿ

i“0

dj pmod 9q

2



and therefore P pk ` 1q follows.
Option 2: (Apply the IH using the smaller terms, but need to apply it again.) Now by
the inductive hypothesis we have

k`1
ÿ

i“0

di10
i “

k
ÿ

i“0

di10
i ` dk`110

k`1 ”

k
ÿ

i“0

di ` dk`110
k`1 pmod 9q.

It remains to handle the last term. We can figure that out again by the inductive
hypothesis: Define d1

k “ dk`1 and d1
j “ 0 for all j ď k, Then by the inductive

hypothesis we have

dk`110
k “ d1

k10
k “

k
ÿ

i“0

d1
i10

i ”

k
ÿ

i“0

d1
i “ d1

k “ dk`1 pmod 9q.

Since 10 ” 1 pmod 9q we can use the multiplicative property of mod to obtain
dk`110

k`1 ” dk`1 pmod 9q. Plugging this into our previous line we have:

k`1
ÿ

i“0

di10
i “

k
ÿ

i“0

di10
i ` dk`110

k`1 ”

k
ÿ

i“0

di ` dk`110
k`1 pmod 9q

”

k
ÿ

i“0

di ` dk`1 pmod 9q

”

k`1
ÿ

i“0

di pmod 9q.

Therefore P pk ` 1q follows.
Conclusion: Therefore P pnq is true for all n P N by induction.

Task 3 – In Harmony with Ordinary Induction

Define

Hi “

i
ÿ

j“1

1

j
“ 1`

1

2
` ¨ ¨ ¨ `

1

i

The numbers Hi are called the harmonic numbers.
Prove that H2n ě 1` n

2 for all integers n ě 0.

Let P pnq be “H2n ě 1` n
2 ”. We will prove P pnq for all integers n ě 0 by induction.

Base Case pn “ 0q: H20 “ H1 “
ř1

j“1
1
j “ 1 ě 1` 0

2 , so P p0q holds.

Induction Hypothesis: Assume that H2k ě 1` k
2 for some arbitrary integer k ě 0.
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Induction Step: Goal: Show H2k`1 ě 1`
k ` 1

2

H2k`1 “

2k`1
ÿ

j“1

1

j

“

2k
ÿ

j“1

1

j
`

2k`1
ÿ

j“2k`1

1

j

ě 1`
k

2
`

2k`1
ÿ

j“2k`1

1

j
[Induction Hypothesis]

ě 1`
k

2
` 2k ¨

1

2k`1
[There are 2k terms in [2k ` 1,2k`1] and each is at least 1

2k`1
]

ě 1`
k

2
`

2k

2k`1

ě 1`
k

2
`

1

2
ě 1`

k ` 1

2

So P pk ` 1q follows.
Conclusion: P pnq holds for all integers n ě 0 by induction.

Task 4 – Induction with Formulas

These problems are a little more abstract.

a) i. Show that given two sets A and B that AYB “ AXB. (Don’t use induction.)
Let x be arbitrary. Then,

x P AYB ”  px P AYBq [Definition of complement]
”  px P A_ x P Bq [Definition of union]
”  px P Aq ^  px P Bq [De Morgan’s Laws]
” x P A^ x P B [Definition of complement]
” x P pAXBq [Definition of intersection]

Since x was arbitrary we have that x P AYB if and only if x P A X B for all x. By
the definition of set equality we’ve shown,

AYB “ AXB.
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ii. Show using induction that for an integer n ě 2, given n sets A1, A2, . . . , An´1, An that

A1 YA2 Y ¨ ¨ ¨ YAn´1 YAn “ A1 XA2 X ¨ ¨ ¨ XAn´1 XAn

Let P pnq be “given n sets A1, A2, . . . , An´1, An it holds that A1 YA2 Y ¨ ¨ ¨ YAn “

A1 XA2 X ¨ ¨ ¨ XAn´1 XAn.” We show P pnq for all integers n ě 2 by induction on n.
Base Case: P p2q says that for two sets A1 and A2 that A1 YA2 “ A1 X A2, which

is exactly part (a) so P p2q holds.
Inductive Hypothesis: Suppose that P pkq holds for some arbitrary integer k ě 2.
Inductive Step: Let A1, A2, . . . , Ak, Ak`1 be sets. Then by part (a) we have,

pA1 YA2 Y ¨ ¨ ¨ YAkq YAk`1 “ A1 YA2 Y ¨ ¨ ¨ YAk XAk`1.

By the inductive hypothesis we have A1 YA2 Y ¨ ¨ ¨Ak “ A1 X A2 X ¨ ¨ ¨ X Ak.
Thus,

A1 YA2 Y ¨ ¨ ¨ YAk XAk`1 “ pA1 XA2 X ¨ ¨ ¨Akq XAk`1.

We’ve now shown

A1 YA2 Y ¨ ¨ ¨ YAk YAk`1 “ A1 XA2 X ¨ ¨ ¨Ak XAk`1.

which is exactly P pk ` 1q.
Conclusion P pnq holds for all integers n ě 2 by the principle of induction.

b) i. Show that given any integers a, b, and c, if c | a and c | b, then c | pa`bq. (Don’t use induction.)
Let a, b, and c be arbitrary integers and suppose that c | a and c | b. Then by definition
there exist integers j and k such that a “ jc and b “ kc. Then a ` b “ jc ` kc “
pj ` kqc. Since j ` k is an integer, by definition we have c | pa` bq.

ii. Show using induction that for any integer n ě 2, given n numbers a1, a2, . . . , an´1, an, for any
integer c such that c | ai for i “ 1, 2, . . . , n, that

c | pa1 ` a2 ` ¨ ¨ ¨ ` an´1 ` anq.

In other words, if a number divides each term in a sum then that number divides the sum.
Let P pnq be “given n numbers a1, a2, . . . , an´1, an, for any integer c such that c | ai
for i “ 1, 2, . . . , n, it holds that c | pa1 ` a2 ` ¨ ¨ ¨ ` anq.” We show P pnq holds for all
integer n ě 2 by induction on n.
Base Case: P p2q says that given two integers a1 and a2, for any integer c such that

c | a1 and c | a2 it holds that c | pa1 ` a2q. This is exactly part (a) so P p2q holds.
Inductive Hypothesis: Suppose that P pkq holds for some arbitrary integer k ě 2.
Inductive Step: Let a1, a2, . . . , ak, ak`1 be k ` 1 integers. Let c be arbitrary and

suppose that c | ai for i “ 1, 2, . . . , k ` 1. Then we can write

a1 ` a2 ` ¨ ¨ ¨ ` ak ` ak`1 “ pa1 ` a2 ` ¨ ¨ ¨ ` akq ` ak`1.

The sum a1 ` a2 ` ¨ ¨ ¨ ` ak has k terms and c divides all of them, meaning we
can apply the inductive hypothesis. It says that c | pa1 ` a2 ` ¨ ¨ ¨ ` akq. Since
c | pa1 ` a2 ` ¨ ¨ ¨ ` akq and c | ak`1, by part (a) we have,

c | pa1 ` a2 ` ¨ ¨ ¨ ` ak ` ak`1q.

This shows P pk ` 1q.
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Conclusion: P pnq holds for all integers n ě 2 by induction the principle of induction.

Task 5 – Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in year n is described by the function
fpnq:

fp0q “ 0

fp1q “ 1

fpnq “ 2fpn´ 1q ´ fpn´ 2q for n ě 2

Determine, with proof, the number, fpnq, of rabbits that Cantelli owns in year n. That is, construct a
formula for fpnq and prove its correctness.

Let P pnq be “fpnq “ n”. We prove that P pnq is true for all n ě 0 by strong induction on
n.

Base Cases pn “ 0, n “ 1q: fp0q “ 0 and fp1q “ 1 by definition.
Inductive Hypothesis: Assume that P p0q, P p1q, . . . , P pkq all are true for some arbitrary

k ě 1.
Inductive Step: We show P pk ` 1q:

fpk ` 1q “ 2fpkq ´ fpk ´ 1q [Definition of f ]
“ 2pkq ´ pk ´ 1q [Induction Hypothesis]
“ k ` 1 [Algebra]

Conclusion: P pnq is true for all n P N by principle of strong induction.
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Task 6 – Strong Induction

Consider the function apnq defined for n ě 1 recursively as follows.

ap1q “ 1

ap2q “ 3

apnq “ 2apn´ 1q ´ apn´ 2q for n ě 3

Use strong induction to prove that apnq “ 2n´ 1 for all n ě 1.

Let P pnq be “apnq “ 2n ´ 1“. We will show that P pnq is true for all n ě 1 by strong
induction.
Base Cases pn “ 1, n “ 2q:
pn “ 1q
ap1q “ 1 “ 2 ¨ 1´ 1

pn “ 2q
ap2q “ 3 “ 2 ¨ 2´ 1

So, P p1q and P p2q hold.
Inductive Hypothesis:
Suppose that P pkq is true for all integers 1 ď j ď k for some arbitrary k ě 2.
Inductive Step:
We will show P pk ` 1q holds.

apk ` 1q “ 2apkq ´ apk ´ 1q [Definition of a]
“ 2p2k ´ 1q ´ p2pk ´ 1q ´ 1q [Inductive Hypothesis]
“ 2k ` 1 [Algebra]
“ 2pk ` 1q ´ 1 [Algebra]

So, P pk ` 1q holds.
Conclusion:
Therefore, P pnq holds for all integers n ě 1 by principle of strong induction.
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Task 7 – Structural Induction

Define the set S as follows:
Basis Step: r1, 1, 0s P S and r0, 1, 1s P S.
Recursive Step: If ru, v, ws P S and ru1, v1, w1s P S
and α P R then rαu, αv, αws P S and ru` u1, v ` v1, w ` w1s P S.

Prove that every x P S can be written in the form x “ ru, v, ws where u, v, w P R and v “ u` w.

Define P pxq be “x is of the form ru, v, ws where u, v, w P R and v “ u ` w”. We prove
P pxq for all x P S by structural induction.

Base Case: 0, 1 P R and 1 “ 0` 1 and 1 “ 1` 0, so r0, 1, 1s and r1, 1, 0s are of the form
ru, v, ws where u, v, w P R and v “ u` w so P pr0, 1, 1sq and P pr1, 1, 0sq both holds

Inductive Hypothesis: Suppose that for some arbitrary x P S and x1 P S, P pxq and P px1q

both are true.
Then x “ ru, v, ws and x1 “ ru1, v1, w1s for some u, v, w, u1, v1, w1 P R such that
v “ u` w and v1 “ u1 ` w1.

Inductive Step: Goal: Prove that for all α P R, we have P prαu, αv, αwsq and
P pru` u1, v ` v1, w ` w1sq.

Clearly, by the closure of R under multiplication and addition, both rαu, αv, αws and
ru` u1, v ` v1, w ` w1s are of the right form. Finally, we observe that

αv “ αpu` wq by the I.H. applied to x “ ru, v, ws

“ αu` αw,

so P prαu, αv, αwsq follows and

v ` v1 “ u` w ` v1 by the I.H. applied to x “ ru, v, ws

“ u` w ` u1 ` w1 by the I.H. applied to x1 “ ru1, v1, w1s

“ pu` wq ` pw ` w1q,

so P pru` u1, v ` v1, w ` w1sq follows.
Conclusion: Thus, P pxq is true for all x P S by structural induction.
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