
CSE 311: Foundations of Computing I Spring 2023

Quiz Section 5: Set Theory, Induction – Solutions

Review

Set theory:

- AzB “ tx : x P A^ x R Bu. Or, equivalently, x P AzB Ø x P A^ x R B.

- AˆB “ tpa, bq : a P A, b P Bu. Or, equivalently, pa, bq P AˆB Ø a P A^ b P B.

- PpAq “ tB : B Ď Au. Or, equivalently, B P PpAq Ø B Ď A.

5 Steps to an Induction Proof: To prove @n P N P pnq (or equivalently @n ě 0 P pnq for n P Z).

1. “Let P pnq be xfill iny. We will show that P pnq is true for every n P N (or equivalently integer
n ě 0) by induction.”

2. “Base Case:” Prove P p0q

3. “Inductive Hypothesis: Suppose P pkq is true for some arbitrary integer k ě 0”

4. “Inductive Step:” Prove that P pk ` 1q is true.

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it.
(Don’t assume P pk ` 1q!)

5. “Conclusion: The claim follows by induction”

Task 1 – Efficient Modular Exponentiation

a) Compute 271 mod 25 using the efficient modular exponentiation algorithm.

21 ” 2 pmod 25q

22 ” 4 pmod 25q

24 ” 16 pmod 25q

28 ” 162 ” 6 pmod 25q since 162 mod 25 “ 256 mod 25 “ 6

216 ” 62 ” 11 pmod 25q

232 ” 112 ” 21 pmod 25q since 112 mod 25 “ 121 mod 25 “ 21

264 ” 212 ” 16 pmod 25q since 212 mod 25 “ 441 mod 25 “ 16

Therefore, since 71 “ 64` 4` 2` 1, we see that
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271 ” 264 ˆ 24 ˆ 22 ˆ 21 pmod 25q

” 16ˆ 16ˆ 4ˆ 2 pmod 25q

” 16ˆ 16ˆ 8 ” 16ˆ 16ˆ 8 pmod 25q

” 16ˆ 128 ” 16ˆ 3 pmod 25q

” 48 ” 23 pmod 25q

Therefore 271 mod 25 “ 23.

b) How many modular multiplications does the algorithm use for this computation?

6 to compute 2k mod 71 for k a power of 2 plus 3 to multiply the ones selected for the
final result = 9.

Task 2 – How Many Elements?
For each of these, how many elements are in the set? If the set has infinitely many elements, say 8.
a) A “ t1, 2, 3, 2u

3

b) B “ ttu, ttuu, ttu, tuu, ttu, tu, tuu, . . . u

B “ ttu, ttuu, ttu, tuu, ttu, tu, tuu, . . . u

“ ttu, ttuu, ttuu, ttuu, . . . u

“ t∅, t∅uu

So, there are two elements in B.

c) D “ ∅

0.

d) E “ t∅u

1.

e) C “ Aˆ pB Y t7uq

C “ t1, 2, 3u ˆ t∅, t∅u, 7u “ tpa, bq | a P t1, 2, 3u, b P t∅, t∅u, 7uu. It follows that there
are 3ˆ 3 “ 9 elements in C.

f) G “ Ppt∅uq

21 “ 2. The elements are G “ t∅, t∅uu.
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Task 3 – Set Replay

Prove each of the following set identities.

a) AzB Ď AY C for any sets A,B,C.

Let x be an arbitrary object. Suppose that x P AzB. By definition, this means that x P A
and x R B. Since x P A, we have x P AYC by the definition of Y. Since x was arbitrary,
this shows AzB Ď AY C.

b) pAzBqzC Ď AzC for any sets A,B,C.

Let x be an arbitrary object. Suppose that x P pAzBqzC. By definition, this means that
x P AzB and x R C and then that x P A and x R B. The facts that x P A and x R C
show that x P AzC by definition. Since x was arbitrary, this shows pAzBqzC Ď AzC.

c) pAXBq ˆ C Ď Aˆ pC YDq for any sets A,B,C,D.

Let x be an arbitrary element of pAXBq ˆC. Then, by definition of Cartesian product,
x must be of the form py, zq where y P A X B and z P C. Since y P A X B, by
definition of X, y P A (and y P B). Since z P C, by definition of Y, we also have
z P C YD. Thus, since y P A and z P C YD, by definition of Cartesian product we have
x “ py, zq P A ˆ pC Y Dq. Since x was an arbitrary element of pA X Bq ˆ C we have
proved that pAXBq ˆ C Ď Aˆ pC YDq as required.

Task 4 – Set Equality

Let A and B be sets. Consider the claim: AzpB Y Cq “ pAzBq X pAzCq.
State what the claim becomes when you unroll the definition of “=“ sets. Then, following the Meta
Theorem template, write an English proof that the claim holds.

Unrolling the “, the claim is: @xppx P AzpB Y Cqq Ø px P pAzBq X pAzCqqq.
Let x be arbitrary.

x P AzpB Y Cq ” x P A^ px P pB Y Cqq [Def of Set Difference]
” x P A^ px P B _ x P Cq [Def of Union]
” x P A^ px R B ^ x R Cq [De Morgan]
” px P A^ x P Aq ^ px R B ^ x R Cq [Idempotency]
” px P A^ x R Bq ^ px P A^ x R Cq [Associativity/Commutativity]
” px P pAzBqq ^ px P pAzCqq [Def of Set Difference]
” px P pAzBq X pAzCqq [Def of Intersection]

Since x was arbitrary, we have shown that the two sets contain the same elements.
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Task 5 – Power Sets

Let A and B be sets. Prove that PpAq Ď PpBq follows from A Ď B.

Let X be an arbitrary set in PpAq. By definition of power set, X Ď A. We need to show
that X P PpBq, or equivalently, that X Ď B.
Let x be an arbitrary element of X. Since X Ď A, it must be the case that x P A. We
were given that A Ď B. By definition of subset, any element of A is an element of B. So,
it must also be the case that x P B.
Since x was arbitrary, we know any element of X is an element of B. By definition of
subset, X Ď B. By definition of power set, X P PpBq.
Since X was an arbitrary set, any set in PpAq is in PpBq, or, by definition of subset,
PpAq Ď PpBq. We have shown the claim.
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Task 6 – Beset with Power

Show that for any set X and any set A such that A P PpXq, there exists a set B P PpXq such that
AXB “ H and AYB “ X.

The approach to this problem is less direct than some others. The solution will cover both the answer
and the intuition used to arrive at it.

In this solution we first explain the intuition and the strategy we take before giving the
proof.
We start by letting X and A be arbitrary sets and assume that A P PpXq. We first think
about how to express this more simply. By definition of power set, this means A Ď X which
is simpler to understand.
Now we think about our goal. We want to show there is some set B with the given
properties. There are three of them:

- We must have B P PpXq which means that B Ď X.
- We must have AXB “ H.
- We must have AYB “ X.

The last two properties say that B can’t contain anything that is in A and that the elements
of B together with those in A must give all elements of X. That is, B must consist precisely
those elements of X that aren’t in A. In other words, we must have B “ XzA. It seems
that it will work for all three properties.
Now here’s the proof:
Let X and A be arbitrary sets and assume that A P PpXq.Define B “ XzA. Let x be an
arbitrary object. By definition,

x P B ” x P XzA ” px P X ^ x R Aq,

so x P B implies that x P X. Therefore B Ď X and hence B P PpXq.
Furthermore x P B implies  px P Aq and hence AXB “ H.
Finally, since A Ď X, we have AYpXzAq “ X and hence AYB “ X. This last statement
does need the assumption about A so we give the detailed proof below:

x P AYB ” x P AY pXzAq

” px P Aq _ ppx P X ^ px P Aqq

” ppx P Aq _ px P Xqq ^ ppx P Aq _  px P Aqq

” px P Xq ^ T since A Ď X

” x P X.

Thus A Y B “ X and hence B satisfies all the three required properties which proves the
claim.
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Task 7 – Induction with Equality

a) Define the triangle numbers as 4n “ 0 ` 1 ` 2 ` ¨ ¨ ¨ ` n, where n P N. In class we showed
4n “

npn`1q

2 .
Prove the following equality for all n P N:

03 ` 13 ` ¨ ¨ ¨ ` n3 “ 42
n

First, note that 4n “ p0` 1` 2` ¨ ¨ ¨ ` nq. So, we are trying to prove

p03 ` 13 ` ¨ ¨ ¨ ` n3q “ p0` 1` ¨ ¨ ¨ ` nq2

Proof: Let P pnq be the statement:

03 ` 13 ` ¨ ¨ ¨ ` n3 “ p0` 1` ¨ ¨ ¨ ` nq2.

We prove that P pnq is true for all n P N by induction on n.
Base Case. 03 “ 02, so P p0q holds.
Inductive Hypothesis. Suppose that P pkq is true for some arbitrary k P N.
Inductive Step. We show P pk ` 1q:

03 ` 13 ` ¨ ¨ ¨ pk ` 1q3 “ p03 ` 13 ` ¨ ¨ ¨ ` k3q ` pk ` 1q3 [Associativity ]
“ p0` 1` ¨ ¨ ¨ ` kq2 ` pk ` 1q3 [Inductive Hypothesis]

“

ˆ

kpk ` 1q

2

˙2

` pk ` 1q3 [Proved in class]

“ pk ` 1q2
ˆ

k2

22
` pk ` 1q

˙

[Factor pk ` 1q2]

“ pk ` 1q2
ˆ

k2 ` 4k ` 4

4

˙

[Add via common denominator]

“ pk ` 1q2
ˆ

pk ` 2q2

4

˙

[Factor numerator]

“

ˆ

pk ` 1qpk ` 2q

2

˙2

[Take out the square]

“ p0` 1` ¨ ¨ ¨ ` pk ` 1qq2 [Formula from class again]

Conclusion: P pnq is true for all n P N by the principle of induction.
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b) For every n P N, define Sn to be the sum of the squares of the natural numbers up to n, or

Sn “ 02 ` 12 ` ¨ ¨ ¨n2.

For all n P N, prove that Sn “
1
6npn` 1qp2n` 1q.

Let P pnq be the statement “Sn “
1
6npn ` 1qp2n ` 1q” defined for all n P N. We prove

that P pnq is true for all n P N by induction on n.
Base Case. S0 “ 0. Since 1

6p0qp0` 1qpp2qp0q ` 1q “ 0, we know that Pp0q is true.
Induction Hypothesis. Suppose that P pkq is true for some arbitrary k P N.
Induction Step. Examining Sk`1, we see that

Sk`1 “ 02 ` 12 ` 22 ` ¨ ¨ ¨ ` k2 ` pk ` 1q2 “ Sk ` pk ` 1q2.

By the induction hypothesis, we know that Sk “
1
6kpk ` 1qp2k ` 1q. Therefore, we

can substitute and rewrite the expression as follows:

Sk`1 “ Sk ` pk ` 1q2 by definition

“
1

6
kpk ` 1qp2k ` 1q ` pk ` 1q2 by the I.H.

“ pk ` 1q

ˆ

1

6
kp2k ` 1q ` pk ` 1q

˙

using common factor pk ` 1q

“
1

6
pk ` 1q pkp2k ` 1q ` 6pk ` 1qq

“
1

6
pk ` 1q

`

2k2 ` 7k ` 6
˘

“
1

6
pk ` 1qpk ` 2qp2k ` 3q factoring the quadratic term

“
1

6
pk ` 1qppk ` 1q ` 1qp2pk ` 1q ` 1q

Thus, we can conclude that P pk ` 1q is true.
Note: We used the fact that we needed to prove P pk ` 1q as a clue to
help us figure out what the factors of that quadratic term might be. If
P pk ` 1q had not been correct then this wouldn’t have worked out.

Conclusion: Therefore, P pnq is true for all n P N by induction.
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Task 8 – Induction with Divides

Prove that 9 | pn3 ` pn` 1q3 ` pn` 2q3q for all n ą 1 by induction.

Let P pnq be “9 | n3 ` pn ` 1q3 ` pn ` 2q3”. We will prove P pnq for all integers n ą 1 by
induction.

Base Case pn “ 2q: 23 ` p2 ` 1q3 ` p2 ` 2q3 “ 8 ` 27 ` 64 “ 99 “ 9 ¨ 11, so 9 |
23 ` p2` 1q3 ` p2` 2q3, so P p2q holds.

Induction Hypothesis: Assume that 9 | j3 ` pj ` 1q3 ` pj ` 2q3 for an arbitrary integer
j ą 1. Note that this is equivalent to assuming that j3` pj ` 1q3` pj ` 2q3 “ 9k for
some integer k by the definition of divides.

Induction Step: Goal: Show 9 | pj ` 1q3 ` pj ` 2q3 ` pj ` 3q3

pj ` 1q3 ` pj ` 2q3 ` pj ` 3q3 “ pj ` 3q3 ` 9k ´ j3 for some integer k [Induction Hypothesis]
“ j3 ` 9j2 ` 27j ` 27` 9k ´ j3

“ 9j2 ` 27j ` 27` 9k

“ 9pj2 ` 3j ` 3` kq

Since j is an integer, j2` 3j` 3` k is also an integer. Therefore, by the definition of
divides, 9 | pj ` 1q3` pj ` 2q3` pj ` 3q3, so P pjq Ñ P pj ` 1q for an arbitrary integer
j ą 1.

Conclusion: P pnq holds for all integers n ą 1 by induction.

Task 9 – Induction with Inequality

Prove that 6n` 6 ă 2n for all n ě 6.

Let P pnq be “6n` 6 ă 2n”. We will prove P pnq for all integers n ě 6 by induction on n

Base Case pn “ 6q: 6 ¨ 6` 6 “ 42 ă 64 “ 26, so P p6q holds.
Inductive Hypothesis: Assume that 6k ` 6 ă 2k for an arbitrary integer k ě 6.

Inductive Step: Goal: Show 6pk ` 1q ` 6 ă 2k`1

6pk ` 1q ` 6 “ 6k ` 6` 6

ă 2k ` 6 [Inductive Hypothesis]
ă 2k ` 2k [Since 2k ą 6, since k ě 6]
“ 2 ¨ 2k

“ 2k`1

So P pkq Ñ P pk ` 1q for an arbitrary integer k ě 6.
Conclusion: P pnq holds for all integers n ě 6 by the principle of induction.

8



Task 10 – A Horse of a Different Color

Did you know that all dogs are named Dubs? It’s true. Maybe. Let’s prove it by induction. The key is
talking about groups of dogs, where every dog has the same name.

Let P piq mean “all groups of i dogs have the same name.” We prove @n P pnq by induction on n.

Base Case: P p1q Take an arbitrary group of one dog, all dogs in that group all have the same name
(there’s only the one, so it has the same name as itself).

Inductive Hypothesis: Suppose P pkq holds for some arbitrary k.

Inductive Step: Consider an arbitrary group of k ` 1 dogs. Arbitrarily select a dog, D, and remove
it from the group. What remains is a group of k dogs. By inductive hypothesis, all k of those
dogs have the same name. Add D back to the group, and remove some other dog D1. We have
a (different) group of k dogs, so the inductive hypothesis applies again, and every dog in that
group also shares the same name. All k` 1 dogs appeared in at least one of the two groups, and
our groups overlapped, so all of our k ` 1 dogs have the same name, as required.

Conclusion: We conclude P pnq holds for all n by the principle of induction.

Recalling that Dubs is a dog, we have that every dog must have the same name as him, so every
dog is named Dubs.

This proof cannot be correct (the proposed claim is false). Where is the bug?

The bug is in the final sentence of the inductive step. We claimed that the groups overlapped,
i.e. that some dog was in both of them. That’s true for large k, but not when k ` 1 “ 2.
When k “ 2, D is in a group by itself, and D1 was in a group by itself. The inductive
hypothesis holds (D has the only name in its subgroup, and D1 has the only name in its
subgroup) but returning to the full group tD,D1u we cannot conclude that they share a
name.
From there everything unravels. P p1q Û P p2q, so we cannot use the principle of induction.
It turns out this is the only bug in the proof. The argument in the inductive step is correct
as long as k ` 1 ą 2. But that implication is always vacuous, since P p2q is false.
In fact, if you think about it in common English, every pair of dogs having the same name
(which is exactly what P p2q says), is equivalent to saying that all dogs have the same name.
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