
CSE 311: Foundations of Computing I Spring 2023

Quiz Section 4: Number Theory – Solutions
Review

Divisibility: For d ‰ 0 we write pd | aq iff there is an integer k such that a “ kd.
Division Theorem: For integers a and b with b ą 0, there are unique integers q and r such that
a “ qb ` r and 0 ď r ă b. The remainder r is also written as a mod b.
Mod Predicate pmod mq: For integer m ą 0 and integers a and b, we write a ” b pmod mq iff
m|pa ´ bq. This is equivalent to pa ´ bq “ km for some integer k; it is also equivalent to a “ b ` km
for some integer k.
Properties of pmod mq:

- For m ą 0, a ” b pmod mq iff a mod m “ b mod m.

- If a ” b pmod mq and b ” c pmod mq then a ” c pmod mq.

- If a ” b pmod mq and c ” d pmod mq then

– a ` c ” b ` d pmod mq

– ac ” bd pmod mq

Prime: An integer n ą 1 is prime iff its only positive divisors are 1 and n.
Unique Factorization Theorem: Every positive integer has a unique representation as a product of
prime numbers (assuming that the primes in the product are listed with smaller ones first).
Greatest Common Divisor: gcdpa, bq is the largest common divisor of a and b.
Properties of gcd: For positive integers a and b, gcdpa, 0q “ a and gcdpa, bq “ gcdpb, a mod bq.
Multiplicative Inverse: For m ą 0 and 0 ď a ă m, the multiplicative inverse of a modulo m is a
number b with 0 ď b ă m such that ab ” 1 pmod mq. It exists if and only if gcdpa,mq “ 1.

Task 1 – Division of Labor

a) For the domain of integers give an English proof that if ab “ 1 then a “ 1 or a “ ´1.

Suppose that ab “ 1. We can’t have a “ 0 since 0 ˆ b “ 0. Then we can divide by a
and write b “ 1{a. If a ą 1 this is not an integer but b is supposed to be an integer so
this can’t be the case; the same holds for a ă ´1. We have ruled out all other options so
a “ 1 or a “ ´1 are the only options left. (Note that both are possible by setting b “ a.)

b) Give an English proof of the following claim over the domain of integers: if a | b, b | a, and a ‰ 0,
then a “ b or a “ ´b.

Suppose that a | b, b | a, and a ‰ 0. By the definition of divides, we have b “ ja and
a “ kb for some integers j, k. Combining these equations, we see that a “ kb “ kpjaq “

pkjqa. Since a ‰ 0, we can divide both sides by a to see that kj “ 1.
By the property of integer multiplication proved in part (a), kj “ 1 is only possible if
j “ k “ 1 or j “ k “ ´1. If the first holds, then we have a “ kb “ b. If the second
holds, then we have a “ kb “ ´b. Hence, in either case, we have a “ b or a “ ´b.
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Task 2 – This is really mod

Let n and m be integers greater than 1, and suppose that n | m. Give an English proof that for any
integers a and b, if a ” b pmod mq, then a ” b pmod nq.

Let a and b be arbitrary integers and n ą 1 and m ą 1. Suppose that a ” b pmod mq.
Then, by definition of pmod mq, m | pa ´ bq, so there exists an integer k such that
a ´ b “ km. Also, since n | m, there is an integer j such that m “ jn. Thus, we have

a ´ b “ km

“ kpjnq

“ pkjqn.

So, by definition, n | pa ´ bq, so a ” b pmod nq.

Task 3 – Casing the Joint

Prove that for every integer n, n2 ” 0 pmod 3q or n2 ” 1 pmod 3q.

We give a proof by cases:
Case n ” 0 pmod 3q:
In this case, by the multiplicative property of mod we have n2 ” 02 ” 0 pmod 3q.
Case n ” 1 pmod 3q:
In this case, by the multiplicative property of mod we have n2 ” 12 ” 1 pmod 3q.
Case n ” 2 pmod 3q:
In this case, by the multiplicative property of mod we have n2 ” 22 ” 4 ” 1 pmod 3q.

By the Division Theorem, these cases cover all possible integers n, so we have
n2 ” 0 pmod 3q or n2 ” 1 pmod 3q for all integers n.

2



Task 4 – Primality Checking

The following code, isPrime(int n) uses the direct definition of primality to test if its input n is prime
by trying all potential divisors of n between 2 and n ´ 1. It therefore returns true if and only if n is
prime.

public boolean isPrime(int n) {
if (n <= 1)

return false;
int potentialDiv = 2;
while (potentialDiv < n) {

if (n % potenttialDiv == 0)
return false;

potentialDiv++;
}
return true;

}

In fact, we can make it run faster by replacing potentialDiv < n with potentialDiv <= Math.sqrt(n)
since there will be many fewer values of potentialDiv to check.

But is the code still correct? This motivates the following;

a) Let n, a, and b be positive integers. Give an English proof that if n “ ab, then one of a or b is at
most

?
n.

(Hint: You may want to use a proof by contrapositive or by contradiction. You can use all properties
of ď and ą symbols that you know, including the fact that for all positive numbers u, v, x, y, u ą v
and x ą y implies that ux ą vy.)

Suppose that n “ ab. Suppose for a contradiction that a, b ą
?
n. It follows that

ab ą
?
n

?
n “ n. We cannot have both ab “ n and ab ą n, so this is a contradiction.

It follows that a or b is at most
?
n.

b) Why, informally, does part (a) imply that the modifed code will still be correct?

If n is not prime there will be a positive factor a of n that is not equal 1 or n, so n “ ab
for some positive integer b which also can’t be 1 or n. Then by part (a) either a ď

?
n

or b ď
?
n so the smaller of the two numbers will be at most

?
n and will be found by

the algorithm.
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Task 5 – Planning Your Tiling

Suppose that you had a rectangular room and wanted to tile the entire floor with square tiles of all the
same size that are as big as possible (assuming no spacing between tiles and no partial tiles).

a) What is the largest square tile you could use if the room’s dimensions are 308 cm by 224 cm?

Since the tiles are square, their side length must divide both of the dimensions evenly.
Therefore the largest tiles will have length equal to the gcdp308, 224q cm.
We do the computation of the gcd using the tableau:

308 “ 1 ˆ 224 ` 84

224 “ 2 ˆ 84 ` 56

84 “ 1 ˆ 56 ` 28

56 “ 2 ˆ 28 ` 0.

Therefore the gcdp308, 224q “ 28, so tiles that are 28 cm on a side are the largest possible.

Note: This is the kind of problem in ancient Greece that may have motivated the creation
of Euclid’s algorithm: Instead of division with remainder, you repeatedly mark off squares
with length equal to the shorter of two sides until they don’t fit any more. This eventually
leaves a rectangle that is too small to fit another square of this size. They then repeat
this again with the smaller rectangle that is left over, using the shorter of its sides as the
side of a new square tiling. This square tiling will run out also, leaving a smaller rectangle
that you tile with smaller squares. Eventually the square tiles exactly fill the rectangle and
that size can be used to tile all the larger squares. See minutes 6:00-8:00 in this video:
https://www.youtube.com/watch?v=kiFfp-HAu64

b) How many tiles will you need?

224 “ 8 ˆ 28 and 308 “ 11 ˆ 28 so there will be 8 ˆ 11 “ 88 tiles.
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Task 6 – GCD

Compute the following GCDs.

a) gcdp9, 6q

gcdp9, 6q “ gcdp6, 3q 9 “ 1 ˆ 6 ` 3

“ gcdp3, 0q 6 “ 2 ˆ 3 ` 0

“ 3

b) gcdp18, 14q

gcdp18, 14q “ gcdp14, 4q 18 “ 1 ˆ 14 ` 4

“ gcdp4, 2q 14 “ 3 ˆ 4 ` 2

“ gcdp2, 0q 4 “ 2 ˆ 2 ` 0

“ 2

c) gcdp80, 44q

gcdp80, 44q “ gcdp44, 36q 80 “ 1 ˆ 44 ` 36

“ gcdp36, 8q 44 “ 1 ˆ 36 ` 8

“ gcdp8, 4q 36 “ 4 ˆ 8 ` 4

“ gcdp4, 0q 8 “ 2 ˆ 4 ` 0

“ 4

d) gcdp77, 43q

gcdp77, 43q “ gcdp43, 34q 77 “ 1 ˆ 43 ` 34

“ gcdp34, 9q 43 “ 1 ˆ 34 ` 9

“ gcdp9, 7q 34 “ 3 ˆ 9 ` 7

“ gcdp7, 2q 9 “ 1 ˆ 7 ` 2

“ gcdp2, 1q 7 “ 3 ˆ 2 ` 1

“ gcdp1, 0q 2 “ 2 ˆ 1 ` 0

“ 1
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Task 7 – Multiplicative inverses

For each of the following choices of a and m, determine whether a has a multiplicative inverse modulo
m. If yes, guess a multiplicative inverse of a modulo m and check your answer.

a) a “ 3 and m “ 8

We first compute gcdp8, 3q.

8 “ 2 ˆ 3 ` 2

3 “ 1 ˆ 2 ` 1

2 “ 2 ˆ 1 ` 0

Since the result is 1, we conclude that 3 does have a multiplicative inverse modulo 8. By
trying a few values, we find that 3 ˆ 3 ” 1 pmod 8q, so 3 is the multiplicative inverse of
3 modulo 8.

b) a “ 6 and m “ 28

We first compute gcdp28, 6q.

28 “ 4 ˆ 6 ` 4

6 “ 1 ˆ 4 ` 2

4 “ 2 ˆ 2 ` 0

Since the result is 2, the gcd is not 1 and we conclude that 6 does not have a multiplicative
inverse modulo 28.

c) a “ 5 and m “ 29

We first compute gcdp29, 5q.

29 “ 5 ˆ 5 ` 4

5 “ 1 ˆ 4 ` 1

4 “ 4 ˆ 1 ` 0

Since the result is 1, we conclude that 5 does have a multiplicative inverse modulo 29.
By trying a few values, we find that 5ˆ6 ” 1 pmod 29q, so 6 is the multiplicative inverse
of 5 modulo 29.

6



Task 8 – Extended Euclidean Algorithm Practice

For each of the following choices of a and m, use the Extended Euclidean Algorithm to compute the
multiplicative inverse of a modulo m. (In all cases below, gcdpm, aq “ 1.)

a) a “ 9 and m “ 17

Compute gcdp17, 9q: The forward pass of the Extended Euclidean Algorithm gives the
tableau:

17 “ 1 ˆ 9 ` 8

9 “ 1 ˆ 8 ` 1

8 “ 8 ˆ 1 ` 0.

Therefore gcdp17, 9q “ 1 and the multiplicative inverse exists. Then, the rearranged
tableau is

8 “ 17 ´ 1 ˆ 9

1 “ 9 ´ 1 ˆ 8.

Back-substituting, we get

1 “ 1 ˆ 9 ` p´1q ˆ 8

“ 1 ˆ 9 ` p´1q ˆ p17 ´ 1 ˆ 9q

“ 2 ˆ 9 ´ 1 ˆ 17.

So 2 is the multiplicative inverse of 9 modulo 17.

b) a “ 9 and m “ 14

Compute gcdp14, 9q: The forward pass of the Extended Euclidean Algorithm gives the
tableau:

14 “ 1 ˆ 9 ` 5

9 “ 1 ˆ 5 ` 4

5 “ 1 ˆ 4 ` 1

4 “ 4 ˆ 1 ` 0.

Therefore gcdp14, 9q “ 1 and the multiplicative inverse exists. Then, the rearranged
tableau is

5 “ 14 ´ 1 ˆ 9

4 “ 9 ´ 1 ˆ 5

1 “ 5 ´ 1 ˆ 4.
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Back-substituting, we get

1 “ 1 ˆ 5 ´ 1 ˆ 4

“ 1 ˆ 5 ` p´1q ˆ p9 ´ 1 ˆ 5q

“ p´1q ˆ 9 ` 2 ˆ 5

“ p´1q ˆ 9 ` 2 ˆ p14 ´ 1 ˆ 9q

“ 2 ˆ 14 ` p´3q ˆ 9.

So p´3q ˆ 9 ” 1 pmod 14q. The multiplicative inverse of 9 modulo 14 must also be
between 0 and 13. Since ´3 ” 11 pmod 14q, we get that 11 ˆ 9 ” 1 pmod 14q and 11
is the multiplicative inverse of 9 modulo 14.

c) a “ 34 and m “ 43

Compute gcdp43, 34q: The forward pass of the Extended Euclidean Algorithm gives the
tableau:

43 “ 1 ˆ 34 ` 9

34 “ 3 ˆ 9 ` 7

9 “ 1 ˆ 7 ` 2

7 “ 3 ˆ 2 ` 1

2 “ 2 ˆ 1 ` 0.

Therefore gcdp43, 34q “ 1 and the multiplicative inverse exists. Then, the rearranged
tableau is

9 “ 43 ´ 1 ˆ 34

7 “ 34 ´ 3 ˆ 9

2 “ 9 ´ 1 ˆ 7

1 “ 7 ´ 3 ˆ 2.

Back-substituting, we get

1 “ 1 ˆ 7 ` p´3q ˆ 2

“ 1 ˆ 7 ` p´3q ˆ p9 ´ 1 ˆ 7q

“ p´3q ˆ 9 ` 4 ˆ 7

“ p´3q ˆ 9 ` 4 ˆ p34 ´ 3 ˆ 9q

“ 4 ˆ 34 ` p´15q ˆ 9

´ 4 ˆ 34 ` p´15q ˆ p43 ´ 1 ˆ 34q

“ p´15q ˆ 43 ` 19 ˆ 34.

So, 19 is the multiplicative inverse of 34 modulo 43.
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