
CSE 311: Foundations of Computing I Spring 2023

Quiz Section 2: Circuits and Predicate Logic – Solutions

Review

Boolean Algebra
Closure a` b is in B a ‚ b is in B
Commutativity a` b “ b` a a ‚ b “ b ‚ a

Associativity a` pb` cq “ pa` bq ` c a ‚ pb ‚ cq “ pa ‚ bq ‚ c

Identity a` 0 “ a a ‚ 1 “ a

Distributivity a` pb ‚ cq “ pa` bq ‚ pa` cq a ‚ pb` cq “ pa ‚ bq ` pa ‚ cq

Complementarity a` a1 “ 1 a ‚ a1 “ 0

Null a` 1 “ 1 a ‚ 0 “ 0

Idempotency a` a “ a a ‚ a “ a

Involution pa1q1 “ a

DeMorgan pa` b` ¨ ¨ ¨ q1 “ a1 ‚ b1 ‚ ¨ ¨ ¨ pa ‚ b ‚ ¨ ¨ ¨ q1 “ a1 ` b1 ` ¨ ¨ ¨

Uniting a ‚ b` a ‚ b1 “ a pa` bq ‚ pa` b1q “ a

Absorption a` a ‚ b “ a a ‚ pa` bq “ a

Task 1 – Circuitous

Translate the following circuit into a logical expression.

r

p NOT

NOT AND

OR NOT OUT

 p p_ pp^ rqq

Task 2 – More Circuits

Let Q be defined by Qpp, qq “ p pq ‘ q. Using only NOT, OR and Q gates, draw a circuit that
represents the logical expression pa^ bq ‘ c.

pa^ bq ‘ c ” p a^ bq ‘ c Double Negation
” p a^ bq ‘ c Double Negation
” p a_ bq ‘ c De Morgan

1

c

b

a

NOT

NOT

OR

&Q OUT

Task 3 – Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then,
simplify it using axioms and theorems of boolean algebra.

a) p_ p q _ pp^ qqq

First, we replace ,_, and ^. This gives us p1 ` q1 ` pq. In boolean algebra, we omit
the parentheses, since we are used to the fact that all the operators are commutative and
associative. We can use DeMorgan’s laws to get the slightly simpler ppqq1`pq. Then, we
can use commutativity to get pq ` ppqq1 and complementarity to get 1. (Note that this
is another way of saying the formula is a tautology.)

b) pp_ pq ^ pqq

First, we replace ,_, and ^ with their corresponding boolean operators, giving us
pp ` qpq1. Applying DeMorgan’s laws once gives us p1pqpq1, and a second time gives us
p1pq1 ` p1q, which is p1pp1 ` q1q by commutativity. By absorbtion, this is simply p1.

Task 4 – Canonical Forms

Consider the boolean functions F pA,B,Cq and GpA,B,Cq specified by the following truth table:

A B C F pA,B,Cq GpA,B,Cq

1 1 1 1 0
1 1 0 1 1
1 0 1 0 0
1 0 0 0 0
0 1 1 1 1
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

2

a) Write the DNF and CNF expressions for F pA,B,Cq.

DNF: ABC `ABC 1 `A1BC `A1BC 1 `A1B1C 1

CNF: pA1 `B ` C 1qpA1 `B ` CqpA`B ` C 1q

b) Write the DNF and CNF expressions for GpA,B,Cq.

DNF: ABC 1 `A1BC `A1B1C
CNF: pA1 `B1 ` C 1qpA1 `B ` C 1qpA1 `B ` CqpA`B1 ` CqpA`B ` Cq

c) Simplify your CNF form for GpA,B,Cq.

pA1 `B1 ` C 1qpA1 `B ` C 1qpA1 `B ` CqpA`B1 ` CqpA`B ` Cq

“ pA1 ` C 1qpA1 `B ` CqpA`B1 ` CqpA`B ` Cq Uniting
“ pA1 ` C 1qpA1 `B ` CqpA`B1 ` CqpA`B ` CqpA`B ` Cq Idempotency
“ pA1 ` C 1qpB ` CqpA` Cq Uniting
“ pA1 ` C 1qpAB ` Cq Distributivity

Task 5 – Translate to Logic

Express each of these system specifications using predicates, quantifiers, and logical connectives. For
some of these problems, more than one translation will be reasonable depending on your choice of
predicates.

a) Every user has access to an electronic mailbox.

Let the domain be users and mailboxes. Let Userpxq be “x is a user”, let Mailboxpyq be
“y is a mailbox”, and let Accesspx, yq be “x has access to y”.

@x pUserpxq Ñ pDy pMailboxpyq ^ Accesspx, yqqqq

b) The system mailbox can be accessed by everyone in the group if the file system is locked.

Solution 1: Let the domain be people in the group. Let CanAccessSMpxq be “x has access
to the system mailbox”. Let p be the proposition “the file system is locked.”

pÑ @x CanAccessSMpxq.

Solution2: Let the domain be people and mailboxes and use Accesspx, yq as defined in
the solution to part (a), and then also add InGrouppxq for “x is in the group”, and let
SystemMailBox be the name for the system mailbox. Then the translation becomes

FileSystemLocked Ñ @x pInGrouppxq Ñ Accesspx, SystemMailBoxqq.

3

c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic state.

Let the domain be all applications. Let Firewallpxq be “x is the firewall”, and let
ProxyServerpxq be “x is the proxy server.” Let Diagnosticpxq be “x is in a diagnostic
state”.

@x @y ppFirewallpxq ^ Diagnosticpxqq Ñ pProxyServerpyq Ñ Diagnosticpyqq

d) At least one router is functioning normally if the throughput is between 100kbps and 500 kbps and
the proxy server is not in diagnostic mode.

Let the domain be all applications and routers. Let Routerpxq be “x is a router”, and let
ProxyServerpxq be “x is the proxy server.” Let Diagnosticpxq be “x is in a diagnostic
state”. Let p be “the throughput is between 100kbps and 500 kbps”. Let Functioningpyq
be “y is functioning normally”.

pp^@x p ProxyServerpxq_ Diagnosticpxqqq Ñ Dy pRouterpyq^Functioningpyqq

Task 6 – Translate to English

Translate these system specifications into English where F ppq is “Printer p is out of service”, Bppq is
“Printer p is busy”, Lpjq is “Print job j is lost,” and Qpjq is “Print job j is queued”. Let the domain
be all printers and all print jobs.

a) Dp pF ppq ^Bppqq Ñ Dj Lpjq

If at least one printer is busy and out of service, then at least one job is lost.

b) p@j Bpjqq Ñ pDp Qppqq

If all printers are busy, then there is a queued job.

c) Dj pQpjq ^ Lpjqq Ñ Dp F ppq

If there is a queued job that is lost, then a printer is out of service.

d) p@p Bppq ^ @j Qpjqq Ñ Dj Lpjq

If all printers are busy and all jobs are queued, then there is some lost job.

4

Task 7 – Domain Restriction

Translate each of the following sentences into logical notation. These translations require some of our
quantifier tricks. You may use the operators ` and ¨ which take two numbers as input and evaluate to
their sum or product, respectively. Remember:

- To restrict the domain under a @ quantifier, add a hypothesis to an implication.

- To restrict the domain under an D quantifier, AND in the restriction.

- If you want variables to be different, you have to explicitly require them to be not equal.

a) Domain: Positive integers; Predicates: Even, Prime, Equal
“There is only one positive integer that is prime and even.”

DxpPrimepxq ^ Evenpxq ^ @yr Equalpx, yq Ñ pEvenpyq ^ Primepyqqsq

b) Domain: Real numbers; Predicates: Even, Prime, Equal
“There are two different prime numbers that sum to an even number.”

DxDypPrimepxq ^ Primepyq ^ Equalpx, yq ^ Evenpx` yqq

c) Domain: Real numbers; Predicates: Even, Prime, Equal
“The product of two distinct prime numbers is not prime.”

@x@yprPrimepxq ^ Primepyq ^ Equalpx, yqs Ñ Primepxyqq

d) Domain: Real numbers; Predicates: Even, Prime, Equal, Positive, Greater, Integer
“For every positive integer, there is a greater even integer”

@xpPositivepxq ^ Integerpxq Ñ rDypIntegerpyq ^ Evenpyq ^ Greaterpy, xqqsq
Or equivalently: @xDypPositivepxq^Integerpxq Ñ pIntegerpyq^Evenpyq^Greaterpy, xqqq

5

