Lecture 28: Undecidability, Reductions, and Turing Machines
Final exam Monday, Review session Sunday

• **Monday** at either 2:30-4:20 or 4:30-6:20
 – JHN 102
 – Must select your exam time by Saturday
 No changes permitted after that
 – Bring your **UW ID**

• **Comprehensive:** Full probs only on topics that were covered in homework. May have small probs on other topics.
 – May includes pre-midterm topics, e.g., formal proofs.
 – Reference sheets will be included. Closed book. No notes.

• **Review session:** *Sunday starting at 1 pm on Zoom*
 – Bring your questions !!
Review: Countability vs Uncountability

• To prove a set A countable you must show
 – There exists a listing x_1, x_2, x_3, \ldots such that every element of A is in the list.

• To prove a set B uncountable you must show
 – For every listing x_1, x_2, x_3, \ldots there exists some element in B that is not in the list.

 – The diagonalization proof shows how to describe a missing element d in B based on the listing x_1, x_2, x_3, \ldots.

 Important: the proof produces a d no matter what the listing is.
Last time: Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P
 - input x

Output: true if P halts on input x
 false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Proof: By contradiction.

Assume that a program H solving the Halting program does exist. Then program D must exist
Does $D(CODE(D))$ halt?

H solves the halting problem implies that $H(CODE(D), x)$ is true iff $D(x)$ halts, $H(CODE(D), x)$ is false iff $D(x)$ doesn’t halt.

Suppose that $D(CODE(D))$ halts. Then, by definition of H it must be that $H(CODE(D), CODE(D))$ is true. Which by the definition of D means $D(CODE(D))$ doesn’t halt.

Suppose that $D(CODE(D))$ doesn’t halt. Then, by the definition of H it must be that $H(CODE(D), CODE(D))$ is false. Which by the definition of D means $D(CODE(D))$ halts.

The ONLY assumption was the program H exists so that assumption must have been false.

Contradiction!
No general procedure for bug checks succeeds. Now, I won’t just assert that, I’ll show where it leads: I will prove that although you might work till you drop, you cannot tell if computation will stop.

For imagine we have a procedure called P that for specified input permits you to see whether specified source code, with all of its faults, defines a routine that eventually halts.

You feed in your program, with suitable data, and P gets to work, and a little while later (in finite compute time) correctly infers whether infinite looping behavior occurs...
Here’s the trick that I’ll use – and it’s simple to do. I’ll define a procedure, which I will call Q, that will use P’s predictions of halting success to stir up a terrible logical mess.

And this program called Q wouldn’t stay on the shelf; I would ask it to forecast its run on itself. When it reads its own source code, just what will it do? What’s the looping behavior of Q run on Q?

Full poem at:
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
The Halting Problem isn’t the only hard problem

Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:
Prove that if there were a program deciding \(B \) then you can use it to build a program deciding the Halting Problem.

1. “\(B \) decidable \(\rightarrow \) Halting Problem decidable” \(\text{Shown by general method} \)
2. “Halting problem undecidable” \(\text{Turing} \)
3. “Halting Problem undecidable \(\rightarrow \) \(B \) undecidable” \(\text{Contrapositive from 1} \)
4. “\(B \) undecidable” \(\text{Modus Ponens 2 & 3} \)
A CSE 121 assignment

Students should write a Java program that:
– Prints “Hello” to the console
– Eventually exits

Our auto-grading program needs to grade the students.

How do we write that grading program?

WE CAN’T: THIS IS IMPOSSIBLE!
A related undecidable problem

• **HelloWorldTesting Problem:**
 – **Input:** CODE(Q) and x
 – **Output:**
 - True if Q outputs “HELLO WORLD” on input x
 - False if Q does not output “HELLO WORLD” on input x

• **Theorem:** The **HelloWorldTesting Problem** is undecidable.

• **Proof idea:** Show that if there is a program T to decide HelloWorldTesting then there is a program H to decide the Halting Problem for code(P) and x.
A related undecidable problem

• Suppose there is a program T that solves the **HelloWorldTesting** problem. Define program H that takes input $\text{CODE}(P)$ and x and does the following:

 – Creates $\text{CODE}(Q)$ from $\text{CODE}(P)$ by

 (1) removing all output statements from $\text{CODE}(P)$, and

 (2) adding a `System.out.println("HELLO WORLD")` immediately before any spot where P could halt

 Then runs T on input $\text{CODE}(Q)$ and x.

• If P halts on input x then Q prints HELLO WORLD and halts and so H outputs \textbf{true} (because T outputs true on input $\text{CODE}(Q)$)

• If P doesn’t halt on input x then Q won’t print anything since we removed any other print statement from $\text{CODE}(Q)$ so H outputs \textbf{false}

We know that such an H cannot exist. Therefore T cannot exist.
The HaltsNoInput Problem

- **Input:** `CODE(R)` for program `R`
- **Output:** True if `R` halts without reading input
 False otherwise.

Theorem: HaltsNoInput is undecidable

General idea “hard-coding the input”:
- Show how to use `CODE(P)` and `x` to build `CODE(R)` so
 `P` halts on input `x` ⇔ `R` halts without reading input
The HaltsNoInput Problem

“Hard-coding the input”:

- Show how to use CODE(P) and x to build CODE(R) so P halts on input x ⇔ R halts without reading input

- Replace input statement in CODE(P) that reads input x into variable var, by a hard-coded assignment statement:

 var = x

 to produce CODE(R).

- So if we have a program N to decide HaltsNoInput then we can use it as a subroutine as follows to decide the Halting Problem, which we know is impossible:

 On input CODE(P) and x, produce CODE(R). Then run N on input CODE(R) and output the answer that N gives.
• The impossibility of writing the **CSE 121** grading program follows by combining the ideas from the undecidability of `HaltsNoInput` and `HelloWorld`.
More Reductions

- Can use undecidability of these problems to show that other problems are undecidable.

- For instance:
 \[\text{EQUIV}(P, Q) : \begin{cases}
 \text{True} & \text{if } P(x) \text{ and } Q(x) \text{ have the same behavior for every input } x \\
 \text{False} & \text{otherwise}
 \end{cases} \]
Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

- Input CODE\((P) \) and \(x \)
 Output: \textbf{true} if \(P \) prints “ERROR” on input \(x \) after less than 100 steps
 \textbf{false} otherwise

- Input CODE\((P) \) and \(x \)
 Output: \textbf{true} if \(P \) prints “ERROR” on input \(x \) after more than 100 steps
 \textbf{false} otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the \textit{input-output behavior} of Java programs is undecidable.
Computers and algorithms

- Does Java (or any programming language) cover all possible computation? Every possible algorithm?

- There was a time when computers were people who did calculations on sheets of paper to solve computational problems.

- Computers as we know them arose from trying to understand everything these people could do.
Before Java

1930’s:

How can we formalize what algorithms are possible?

• **Turing machines** (Turing, Post)
 – basis of modern computers

• **Lambda Calculus** (Church)
 – basis for functional programming, LISP

• **µ-recursive functions** (Kleene)
 – alternative functional programming basis
Turing machines

Church-Turing Thesis:
Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

- Intuitive justification
- Huge numbers of models based on radically different ideas turned out to be equivalent to TMs
Turing machines

- **Finite Control**
 - Brain/CPU that has only a finite # of possible “states of mind”

- **Recording medium**
 - An unlimited supply of blank “scratch paper” on which to write & read symbols, each chosen from a finite set of possibilities
 - Input also supplied on the scratch paper

- **Focus of attention**
 - Finite control can only focus on a small portion of the recording medium at once
 - Focus of attention can only shift a small amount at a time
Turing machines

• **Recording medium**

 – An infinite read/write “tape” marked off into **cells**
 – Each **cell** can store **one symbol** or be “blank”
 – **Tape** is initially all blank except a few **cells** of the tape containing the input string
 – Read/write head can scan **one cell** of the tape - starts on input

• **In each step, a Turing machine**

 1. Reads the currently scanned cell
 2. Based on current state and scanned symbol
 i. Overwrites symbol in scanned cell
 ii. Moves read/write head left or right one cell
 iii. Changes to a new state

• Each Turing Machine is specified by its **finite set of rules**
Turing machines

<table>
<thead>
<tr>
<th>State</th>
<th>_</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>(1, L, s_3)</td>
<td>(1, L, s_4)</td>
<td>(0, R, s_2)</td>
</tr>
<tr>
<td>s_2</td>
<td>(0, R, s_1)</td>
<td>(1, R, s_1)</td>
<td>(0, R, s_1)</td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transition diagram:

```
_ _ 1 1 0 1 1 _ _
```

Initial state: s_1

Final states: s_2, s_3, s_4
UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell
Turing machines

Ideal Java/C programs:
- Just like the Java/C you’re used to programming with, except you never run out of memory
 - Constructor methods always succeed
 - `malloc` in C never fails

Equivalent to Turing machines except a lot easier to program:
- Turing machine definition is useful for breaking computation down into simplest steps
- We only care about high level so we use programs
Turing’s big idea part 1: Machines as data

Original Turing machine definition:

– A different “machine” M for each task
– Each machine M is defined by a finite set of possible operations on finite set of symbols
– So... M has a finite description as a sequence of symbols, its “code”, which we denote $\langle M \rangle$

You already are used to this idea with the notion of the program code or text but this was a new idea in Turing’s time.
Turing’s big idea part 2: A Universal TM

• A Turing machine interpreter \(U \)
 – On input \(<M>\) and its input \(x\),
 \(U \) outputs the same thing as \(M\) does on input \(x\)
 – At each step it decodes which operation \(M\) would have performed and simulates it.

• One Turing machine is enough
 – Basis for modern stored-program computer
 Von Neumann studied Turing’s UTM design
Takeaway from undecidability

• You can’t rely on the idea of improved compilers and programming languages to eliminate major programming errors
 – truly safe languages can’t possibly do general computation

• Document your code
 – there is no way you can expect someone else to figure out what your program does with just your code; since in general it is provably impossible to do this!
We’ve come a long way!

- Propositional Logic.
- Boolean logic and circuits.
- Boolean algebra.
- Predicates, quantifiers and predicate logic.
- Inference rules and formal proofs for propositional and predicate logic.
- English proofs.
- Modular arithmetic.
- Prime numbers.
- GCD, Euclid's algorithm, modular inverse, and exponentiation.
- Set theory.
We’ve come a long way!

- Induction and Strong Induction.
- Recursively defined functions and sets.
- Structural induction.
- Regular expressions.
- Context-free grammars and languages.
- Relations and composition.
- Transitive-reflexive closure.
- Graph representation of relations and their closures.
We’ve come a long way!

- DFAs, NFAs and language recognition.
- Product construction for DFAs.
- Finite state machines with outputs at states.
- Minimization algorithm for finite state machines.
- Conversion of regular expressions to NFAs.
- Subset construction to convert NFAs to DFAs.
- Equivalence of DFAs, NFAs, Regular Expressions.
- Finite automata for pattern matching.
- Method to prove languages not accepted by DFAs.
- Cardinality, countability and diagonalization.
- Undecidability: Halting problem and evaluating properties of programs.
What’s next? ...after the final exam...

• **Foundations II (312)**
 – Fundamentals of counting, discrete probability, applications of randomness to computing, statistical algorithms and analysis
 – Ideas critical for machine learning, algorithms

• **Data Abstractions (332)**
 – Data structures, a few key algorithms, parallelism
 – Brings programming and theory together
 – Makes heavy use of induction and recursive defns
Course Evaluation Online

• Fill this out by Sunday night!
 – Your ability to fill it out will disappear at 11:59 p.m. on Sunday.
 – We really value your feedback!
Final exam Monday, Review session Sunday

• **Monday** at either **2:30-4:20** or **4:30-6:20**
 – JHN 102
 – Must select your exam time by Saturday
 No changes permitted after that
 – Bring your **UW ID**

• **Comprehensive:** Full probs only on topics that were covered in homework. May have small probs on other topics.
 – May includes pre-midterm topics, e.g., formal proofs.
 – Reference sheets will be included. Closed book. No notes.

• **Review session:** *Sunday starting at 1 pm on Zoom*
 – Bring your questions !!