
CSE 311: Foundations of Computing

Lecture 28: Undecidability, Reductions, and Turing 
Machines



Final exam Monday, Review session Sunday

• Monday at either 2:30-4:20 or 4:30-6:20
– JHN 102
– Must select your exam time by Saturday 

No changes permitted after that

– Bring your UW ID
• Comprehensive: Full probs only on topics that were covered 

in homework. May have small probs on other topics.
– May includes pre-midterm topics, e.g., formal proofs.
– Reference sheets will be included.  Closed book. No notes.

• Review session:  Sunday starting at 1 pm on Zoom
– Bring your questions !!



Review:  Countability vs Uncountability

• To prove a set A countable you must show
– There exists a listing x1,x2,x3, ... such that every 

element of A is in the list.

• To prove a set B uncountable you must show
– For every listing x1,x2,x3, ... there exists some 

element in B that is not in the list.

– The diagonalization proof shows how to describe a 
missing element d in B based on the listing x1,x2,x3, ... .       
Important: the proof produces a d no matter what the listing is. 



Last time: Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]:   There is no program that solves 
the Halting Problem

Proof:  By contradiction.
Assume that a program H solving the Halting 
program does exist.  Then program D must exist

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x



H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */
}

}

Does D(CODE(D)) halt?

Contradiction!The ONLY assumption was the program H exists 

so that assumption must have been false.



SCOOPING THE LOOP SNOOPER
A proof that the Halting Problem is undecidable

by Geoffrey K. Pullum (U. Edinburgh)

No general procedure for bug checks succeeds.
Now, I won’t just assert that, I’ll show where it leads: 
I will prove that although you might work till you drop, 
you cannot tell if computation will stop.

For imagine we have a procedure called P
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data, 
and P gets to work, and a little while later 
(in finite compute time) correctly infers
whether infinite looping behavior occurs... 



SCOOPING THE LOOP SNOOPER

...
Here’s the trick that I’ll use -- and it’s simple to do. 
I’ll define a procedure, which I will call Q,
that will use P’s predictions of halting success 
to stir up a terrible logical mess. 
...

And this program called Q wouldn’t stay on the shelf; 
I would ask it to forecast its run on itself.
When it reads its own source code, just what will it do? 
What’s the looping behavior of Q run on Q? 
...

Full poem at:
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html


The Halting Problem isn’t the only hard problem

Can use the fact that the Halting Problem is undecidable to 
show that other problems are undecidable

General method:
Prove that if there were a program deciding B then you can 
use it to build a program deciding the Halting Problem. 

1. “B decidable  →	 Halting Problem decidable”    Shown by general method
2. “Halting problem undecidable”                            Turing
3. “Halting Problem undecidable → B undecidable”  Contrapositive from 1
4. “B undecidable”                                                     Modus Ponens 2 & 3



A CSE 121 assignment

Students should write a Java program that:
– Prints “Hello” to the console
– Eventually exits

Our auto-grading program needs to grade the 
students. 

How do we write that grading program?

WE CAN’T:  THIS IS IMPOSSIBLE!



A related undecidable problem

• HelloWorldTesting Problem: 
– Input:  CODE(Q) and x
– Output: 

True if Q outputs “HELLO WORLD” on input x
False if Q does not output “HELLO WORLD” on input x

• Theorem: The HelloWorldTesting Problem is undecidable.
• Proof idea: Show that if there is a program T to decide

HelloWorldTesting then there is a program H to decide the
Halting Problem for code(P) and x.   



A related undecidable problem

• Suppose there is a program T that solves the
HelloWorldTesting problem.   Define program H that takes 
input CODE(P) and x and does the following:
– Creates CODE(Q) from CODE(P) by 

(1) removing all output statements from CODE(P), and 
(2) adding a System.out.println(“HELLO WORLD”) immediately 

before any spot where P could halt
Then runs T on input CODE(Q) and x.

• If P halts on input x then Q prints HELLO WORLD and halts and so H
outputs true (because T outputs true on input CODE(Q))

• If P doesn’t halt on input x then Q won’t print anything since we removed 
any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot  exist.



The HaltsNoInput Problem

• Input:  CODE(R) for program R
• Output: True if R halts without reading input

False otherwise.

Theorem:  HaltsNoInput is undecidable

General idea “hard-coding the input”: 
• Show how to use CODE(P) and x to build CODE(R) so 

P halts on input x  ⇔	 R halts without reading input



The HaltsNoInput Problem

“Hard-coding the input”: 
• Show how to use CODE(P) and x to build CODE(R) so

P halts on input x  ⇔	 R halts without reading input

• Replace input statement in CODE(P) that reads input x into 
variable var, by a hard-coded assignment statement:    

var = x
to produce CODE(R).

• So if we have a program N to decide HaltsNoInput then we 
can use it as a subroutine as follows to decide the Halting 
Problem, which we know is impossible:
– On input CODE(P) and x, produce CODE(R).   Then run N on input 

CODE(R) and output the answer that N gives.



• The impossibility of writing the CSE 121 grading 
program follows by combining the ideas from the 
undecidability of HaltsNoInput and HelloWorld.



More Reductions

- Can use undecidability of these problems to show that 
other problems are undecidable.

- For instance:
EQUIV(𝑃, 𝑄) : True if 𝑃 𝑥 and 𝑄(𝑥) have the same 

behavior for every input 𝑥
False otherwise



Rice’s theorem
Not every problem on programs is undecidable!
Which of these is decidable?
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after less than 100 steps

false otherwise
• Input CODE(P) and x

Output: true    if P prints “ERROR” on input x
after more than 100 steps

false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the input-output behavior of 
Java programs is undecidable.



Computers and algorithms

• Does Java (or any programming language) cover all possible 
computation? Every possible algorithm?

• There was a time when computers were people who did 
calculations on sheets paper to solve computational 
problems

• Computers as we known them arose from trying to 
understand everything these people could do.



Before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)
– basis of modern computers

• Lambda Calculus (Church)
– basis for functional programming, LISP

• µ-recursive functions (Kleene)
– alternative functional programming basis



Turing machines

Church-Turing Thesis:
Any reasonable model of computation that includes all 

possible algorithms is equivalent in power to a Turing 
machine

Evidence
– Intuitive justification
– Huge numbers of models based on radically 

different ideas turned out to be equivalent to TMs



Turing machines

• Finite Control
– Brain/CPU  that has only a finite # of possible “states of 

mind”

• Recording medium
– An unlimited supply of blank “scratch paper” on which to 

write & read symbols, each chosen from a finite set of 
possibilities

– Input also supplied on the scratch paper

• Focus of attention
– Finite control can only focus on a small portion of the 

recording medium at once
– Focus of attention can only shift a small amount at a time



Turing machines

• Recording medium
– An infinite read/write “tape” marked off into cells
– Each cell can store one symbol or be “blank”
– Tape is initially all blank except a few cells of the tape 

containing the input string
– Read/write head can scan one cell of the tape - starts on 

input

• In each step, a Turing machine
1. Reads the currently scanned cell
2. Based on current state and scanned symbol 

i. Overwrites symbol in scanned cell
ii. Moves read/write head left or right one cell
iii. Changes to a new state

• Each Turing Machine is specified by its finite set of rules



Turing machines

_ _ 1 1 0 1 1 _ _

_ 0 1

s1 (1, L, s3) (1, L, s4) (0, R, s2)

s2 (0, R, s1) (1, R, s1) (0, R, s1)

s3

s4



UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell



Turing machines

Ideal Java/C programs:
– Just like the Java/C you’re used to programming 

with, except you never run out of memory
• Constructor methods always succeed
• malloc in C never fails

Equivalent to Turing machines except a lot easier to 
program:
– Turing machine definition is useful for breaking 

computation down into simplest steps
– We only care about high level so we use programs



Turing’s big idea part 1:  Machines as data

Original Turing machine definition:
– A different “machine” M for each task
– Each machine M is defined by a finite set of 

possible operations on finite set of symbols
– So... M has a finite description as a sequence of 

symbols, its “code”, which we denote <M>

You already are used to this idea with the notion of the 
program code or text but this was a new idea in Turing’s 
time.



Turing’s big idea part 2:  A Universal TM

• A Turing machine interpreter U
– On input <M> and its input x,                                                    

U outputs the same thing as M does on input x
– At each step it decodes which operation M would have 

performed and simulates it.
• One Turing machine is enough
– Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design

M
input
x

output
M(x) U

x output
M(x)<M>



Takeaway from undecidability

• You can’t rely on the idea of improved compilers 
and programming languages to eliminate major 
programming errors
– truly safe languages can’t possibly do general 

computation

• Document your code
– there is no way you can expect someone else to figure 

out what your program does with just your code; since 
in general it is provably impossible to do this!



We’ve come a long way!

• Propositional Logic. 
• Boolean logic and circuits.
• Boolean algebra.
• Predicates, quantifiers and predicate logic.
• Inference rules and formal proofs for propositional and 

predicate logic.
• English proofs.
• Modular arithmetic.
• Prime numbers.
• GCD, Euclid's algorithm, modular inverse, and 

exponentiation.
• Set theory.



We’ve come a long way!

• Induction and Strong Induction.
• Recursively defined functions and sets.
• Structural induction.
• Regular expressions.
• Context-free grammars and languages.
• Relations and composition.
• Transitive-reflexive closure.
• Graph representation of relations and their closures.



We’ve come a long way!

• DFAs, NFAs and language recognition.
• Product construction for DFAs.
• Finite state machines with outputs at states.
• Minimization algorithm for finite state machines
• Conversion of regular expressions to NFAs.
• Subset construction to convert NFAs to DFAs.
• Equivalence of DFAs, NFAs, Regular Expressions 
• Finite automata for pattern matching.
• Method to prove languages not accepted by DFAs.
• Cardinality, countability and diagonalization
• Undecidability: Halting problem and evaluating properties 

of programs.



What’s next?  ...after the final exam...

• Foundations II  (312)
– Fundamentals of counting, discrete probability, 

applications of randomness to computing, 
statistical algorithms and analysis

– Ideas critical for machine learning, algorithms

• Data Abstractions (332)
– Data structures, a few key algorithms, parallelism
– Brings programming and theory together
– Makes heavy use of induction and recursive defns



Course Evaluation Online

• Fill this out by Sunday night!
– Your ability to fill it out will disappear at     

11:59 p.m. on Sunday.
–We really value your feedback!



Final exam Monday, Review session Sunday

• Monday at either 2:30-4:20 or 4:30-6:20
– JHN 102
– Must select your exam time by Saturday 

No changes permitted after that

– Bring your UW ID
• Comprehensive: Full probs only on topics that were covered 

in homework. May have small probs on other topics.
– May includes pre-midterm topics, e.g., formal proofs.
– Reference sheets will be included.  Closed book. No notes.

• Review session:  Sunday starting at 1 pm on Zoom
– Bring your questions !!


