CSE 311: Foundations of Computing

Lecture 27: Undecidability
Be sure fo

Final exam Monday, Review session Sunday

- Monday at either 2:30-4:20 or 4:30-6:20
- JHN 102
- Must select your exam time by Saturday

No changes permitted after that

- Bring your UW ID
- Comprehensive: Full probs only on topics that were covered in homework. May have small probs on other topics.
- May include pre-midterm topics, e.g., formal proofs.
- Reference sheets will be included. Closed book. No notes.
- Review session: Sunday starting at 1 pm on Zoom
- Bring your questions !!

Last time: Countable sets

A set S is countable iff we can order the elements of S as $S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$

Countable sets:
\mathbb{N} - the natural numbers
\mathbb{Z} - the integers
\mathbb{Q} - the rationals
Σ^{*} - the strings over any finite Σ
Shown

The set of all Java programs

Last time: Not every set is countable

Theorem [Cantor]:
The set of real numbers between 0 and 1 is not countable.

Proof using "diagonalization".

Last time: Proof that $[0,1)$ is not countable

Suppose, for the sake of contradiction, that there is a list of them:

So the list is incomplete, which is a contradiction.
Thus the real numbers between 0 and 1 are not countable: "uncountable"

A note on this proof

- The set of rational numbers in $[0,1)$ also have decimal representations like this
- The only difference is that rational numbers always have repeating decimals in their expansions 0.33333... or .25000000...
- So why wouldn't the same proof show that this set of rational numbers is uncountable?
- Given any listing we could create the flipped diagonal number d as before
- However, d would not have a repeating decimal expansion and so wouldn't be a rational \#
It would not be a "missing" number, so no contradiction.

Last time:

The set of all functions $f: \mathbb{N} \rightarrow\{0, \ldots, 9\}$ is uncountable
Supposed listing of all the functions:

For all \boldsymbol{n}, we have $\boldsymbol{D}(\boldsymbol{n}) \neq \boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{n})$. Therefore $\boldsymbol{D} \neq \boldsymbol{f}_{\boldsymbol{n}}$ for any \boldsymbol{n} and the list is incomplete! $\Rightarrow\{\boldsymbol{f} \mid \boldsymbol{f}: \mathbb{N} \rightarrow\{0,1, \ldots, 9\}\}$ is not countable

Last time: Uncomputable functions

We have seen that:

- The set of all (Java) programs is countable
- The set of all functions $f: \mathbb{N} \rightarrow\{0, \ldots, 9\}$ is not countable

So: There must be some function $f: \mathbb{N} \rightarrow\{0, \ldots, 9\}$ that is not computable by any program!

Uncomputable functions

Interesting... maybe.

Can we come up with an explicit function that is uncomputable?

A "Simple" Program

public static void collatz(n) \{ 11
if (n == 1) \{ 34
return 1; 17
\} 52
if (n \% 2 == 0) \{ 26return collatz(n/2)
13
\}
40
else \{20
\} 10
\} 5What does this program do?168
... on $\mathrm{n}=11$? 4
... on $\mathrm{n}=10000000000000000001$? 21

A "Simple" Program

```
public static void collatz(n) {
    if (n == 1) {
        return 1;
    }
    if (n % 2 == 0) {
        return collatz(n/2)
    }
    else {
        return collatz(3*n + 1)
    }
}
```

Nobody knows whether or not this program halts on all inputs!
What does this program do?
... on $n=11$?
... on $n=10000000000000000001$?

Recall our language picture

Some Notation

We're going to be talking about Java code.

$\operatorname{CODE}(\mathrm{P})$ will mean "the code of the program P "

So, consider the following function:

```
public String P(String x) {
    return new String(Arrays.sort(x.toCharArray());
}
```

What is $\mathrm{P}(\operatorname{CODE}(\mathrm{P}))$?
"((()))))..;AACPSSaaabceeggghiiiilnппппооргггггггггггssstt†tttuuwxxyy\{\}"

The Halting Problem

$\operatorname{CODE}(\mathrm{P})$ means "the code of the program P "

> The Halting Problem Given: - $\operatorname{CODE(P)\text {foranyprogram}\mathbf {P}} \begin{aligned} & \text { - input } \mathbf{x}\end{aligned}$ Output: true if \mathbf{P} halts on input \mathbf{x} $\quad \begin{aligned} & \text { false if } \mathbf{P} \text { does not halt on input } \mathbf{x}\end{aligned}$

Undecidability of the Halting Problem

CODE (P) means "the code of the program P "

> The Halting Problem Given: $-\operatorname{CODE(P)\text {foranyprogram}\mathbf {P}} \begin{aligned} & \text { - input } \mathbf{x}\end{aligned}$ Output: true if \mathbf{P} halts on input \mathbf{x} $\quad \begin{aligned} & \text { false if } \mathbf{P} \text { does not halt on input } \mathbf{x}\end{aligned}$

Theorem [Turing]: There is no program that solves the Halting Problem

$$
(\operatorname{code}(P), x)
$$

Proof by contradiction

Suppose that H is a Java program that solves the Halting problem.

Proof by contradiction

Suppose that H is a Java program that solves the Halting problem.

Then we can write this program:

```
public static void D(String s) {
    if (H(S,s) == true) {
        while (true); // don't halt
    } else {
        return; // halt
    }
}
public static bool H(String s, String x) { ... }
```

Does D(CODE (D)) halt?

Does D(CODE(D)) halt?

```
public static void D(s) {
    if (H(s,s) == true) {
    } else {
    }
}
```


Does D(CODE(D)) halt?
 $S=\operatorname{CODE}(D)$

```
public static void D(s) {
    if (H(s,s) == true) {
```


H solves the halting problem implies that
$\mathrm{H}(\operatorname{CODE}(\mathrm{D}), s)$ is true iff $\mathrm{D}(\mathrm{s})$ halts, $\mathrm{H}(\operatorname{CODE}(\mathrm{D}), s)$ is false of not

Does D(CODE(D)) halt?

```
public static void D(s) {
    if (H(s,s) == true) {
    while (true); // don't halt
    } else { %
    }
}
```

H solves the halting problem implies that
$H(C O D E(D), s)$ is true iff_D(s) halts, $H(C O D E(D), s)$ is false iff not

Does D(CODE(D)) halt?

```
public static void D(s) {
    if (H(S,s) == true) {
    (1) while (true); to don't halt
    } else {
    }
}
```

H solves the halting problem implies that
$H(\operatorname{CODE}(\mathrm{D}), s)$ is true iff $\mathrm{D}(\mathrm{s})$ halts, $\mathrm{H}(\operatorname{CODE}(\mathrm{D}), s)$ is false iff not
Suppose that $D(\operatorname{CODE}(D))$ halts.
Then, by definition of H it must be that $P=C O D E(D)$ $\mathrm{H}(\operatorname{CODE}(\mathrm{D}), \operatorname{CODE}(\mathrm{D})$) is true
Which by the definition of D means $D(C O D E(D))$ doesn't halt

Does D(CODE(D)) halt?

```
public static void D(s) {
    if (H(s,s) == true) {
                while (true); // don't halt
    } else {
        return;
                            // halt
    }
}
```

H solves the halting problem implies that
$H(\operatorname{CODE}(\mathrm{D}), s)$ is true iff $\mathrm{D}(\mathrm{s})$ halts, $\mathrm{H}(\operatorname{CODE}(\mathrm{D}), s)$ is false iff not
Suppose that $\mathrm{D}(\operatorname{CODE}(\mathrm{D}))$ halts.
Then, by definition of H it must be that $H(\operatorname{CODE}(\mathrm{D}), \operatorname{CODE}(\mathrm{D}))$ is true
Which by the definition of D means $D(\operatorname{CODE}(\mathrm{D})$) doesn't halt

Does D(CODE(D)) halt?

```
public static void D(s) {
    if (H(s,s) == true) {
                while (true); // don't halt
            else {
                        return; // halt
}
```

H solves the halting problem implies that
$H(\operatorname{CODE}(\mathrm{D}), s)$ is true iff $\mathrm{D}(\mathrm{s})$ halts, $\mathrm{H}(\operatorname{CODE}(\mathrm{D}), s)$ is false iff not
Suppose that $\operatorname{D}(\operatorname{CODE}(\mathrm{D}))$ halts.
Then, by definition of H it must be that $H(\operatorname{CODE}(\mathrm{D}), \operatorname{CODE}(\mathrm{D}))$ is true
Which by the definition of D means $D(\operatorname{CODE}(\mathrm{D})$) doesn't halt
Suppose that D (CODE (D)) doesn't halt.
Then, by definition of \mathbf{H} it must be that H(CODE (D) , $\operatorname{CODE}(D)$) is false
Which by the definition of D means $D(C O D E(D))$ halts

Does D(CODE(D)) halt?

```
public static void D(s) {
    if (H(s,s) == true) {
                        while (true); // don't halt
                            } else {
                                return; // halt
```

H solves the halting problem implies that
$H(C O D E(D), s)$ is true iff $D(s)$ halts, $H(C O D E($
Şuppose that $\mathrm{D}(\operatorname{CODE}(\mathrm{D}))$ halts.
Then, by definition of H it mind that the pros bee
Suppose th onL assumassumption't halt. exists sols (D), $\operatorname{CODE}(D)$) is false

Whi exy the definition of D means $D(\operatorname{CODE}(\mathrm{D})$) halts

Done

- We proved that there is no computer program that can solve the Halting Problem.
- There was nothing special about Java*
[Church-Turing thesis]

- This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.

Terminology

- With state machines, we say that a machine "recognizes" the language L iff
- it accepts $x \in \Sigma^{*}$ if $x \in L$
- it rejects $x \in \Sigma^{*}$ if $x \notin L$
- With Java programs / general computation, we say that the computer "decides" the language L iff
- it halts with output 1 on input $x \in \Sigma^{*}$ if $x \in L$
- it halts with output 0 on input $x \in \Sigma^{\star}$ if $x \notin L$ (difference is the possibility that machine doesn't halt)
- If no machine decides L, then L is "undecidable"

Where did the idea for creating D come from?

```
public static void D(s) {
    if (H(s,s) == true) {
        while (true); // don't halt
    } else {
        return; // halt
    }
    }
```

8
iff H (code(P),code(P)) outputs false iff P doesn't halt on input code(D)

Connection to diagonalization

Write <P> for CODE(P)

| | $\left\langle P_{1}\right\rangle\left\langle P_{2}\right\rangle\left\langle P_{3}\right\rangle\left\langle P_{4}\right\rangle\left\langle P_{5}\right\rangle\left\langle P_{6}\right\rangle \ldots$ |
| :--- | :--- | Some possible inputs x

Connection to diagonalization Write $<\mathrm{P}\rangle$ for $\operatorname{CODE}(\mathrm{P})$

Connection to diagonalization

Where did the idea for creating D come from?

D halts on input code(P) iff $\mathrm{H}(\operatorname{code}(\mathrm{P})$, code($(\mathrm{P}))$ putputs false iff P doesn't halt on input code (P)

Therefore, for any program P, D differs from P on input code(P)

