Lecture 25: Languages vs Representations:
Limitations of Finite Automata and Regular Expressions
Last time: Algorithms for Regular Languages

We have seen algorithms for

• RE to NFA
• NFA to DFA
• DFA/NFA to RE (not tested)
• DFA minimization

Practice three of these in HW.
(May also be on the final.)
Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every subset of states of the NFA
 – Power set of the set of states of the NFA
 – \(n \)-state NFA yields DFA with at most \(2^n \) states
 – We saw an example where roughly \(2^n \) is necessary
 “Is the \(n^{\text{th}} \) char from the end a 1?”

The famous “P=NP?” question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms
Applications of FSMs

- Implementation of regular expression matching in programs like `grep`
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cache-coherence protocols
 - Each agent runs its own FSM
- Design specifications for reactive systems
 - Components are communicating FSMs
Applications of FSMs

- Formal verification of systems
 - Is an unsafe state reachable?
- Computer games
 - FSMs provide worlds to explore
- Minimization algorithms for FSMs can be extended to more general models used in
 - Text prediction
 - Speech recognition
Application of FSMs: Pattern matching

• Given
 – a string s of n characters
 – a pattern p of m characters
 – usually $m \ll n$

• Find
 – all occurrences of the pattern p in the string s

• Obvious algorithm:
 – try to see if p matches at each of the positions in s
 stop at a failed match and try matching at the next position: \(O(mn) \) running time.
Application of FSMs: Pattern Matching

- With DFAs can do this in $O(m + n)$ time.

- See Extra Credit problem on HW8 for some ideas of how to get to $O(m^2 + n)$ time.
The story so far...

\[
\text{REs} \subseteq \text{CFGs} \\
\text{DFAs} = \text{NFAs} \\
\text{Regular Languages}
\]
What languages have DFAs? CFGs?

All of them?
Languages and Representations!

- All
- Context-Free
- Regular
 - DFA
 - NFA
 - Regex
- Finite
- \{001, 10, 12\}
Languages and Representations!

All

Context-Free

Regular

0*

DFA

NFA

Regex

Finite

{001, 10, 12}

Warmup: All finite languages are regular.
DFAs Recognize Any Finite Language
DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.
Languages and Machines!

- {001, 10, 12}
- 0*
- Regular
- Context-Free
- All

Warmup 2: Surprising example here
An Interesting Infinite Regular Language

$L = \{ x \in \{0, 1\}^* : x \text{ has an equal number of substrings } 01 \text{ and } 10 \}.$

L is infinite.

0, 00, 000, ...

L is regular. **How could this be?**

That seems to require comparing counts...

- easy for a CFG
- but seems hard for DFAs!
An Interesting Infinite Regular Language

$L = \{x \in \{0, 1\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}$.

L is infinite.

$0, 00, 000, \ldots$

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!
Languages and Representations!

Main Event: Prove there is a context-free language that isn’t regular.
The language of “Binary Palindromes” is Context-Free

\[S \rightarrow \varepsilon \mid 0 \mid 1 \mid 0S0 \mid 1S1 \]
Is the language of “Binary Palindromes” Regular?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide?
A: It would need to keep track of the “first part” of the input in order to check the second part against it ...
...but there are an infinite # of possible first parts and we only have finitely many states.

Proof idea: any machine that does not remember the entire first half will be wrong for some inputs
The general proof strategy is:

- Assume (for contradiction) that some DFA (call it M) exists that recognizes B.
$B = \{\text{binary palindromes}\}$ can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that some DFA (call it M) exists that recognizes B
– Our goal is to show that M actually does not recognize B

How can a DFA fail to recognize B?

– when it accepts or rejects a string it shouldn’t.
B = \{binary palindromes\} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that some DFA (call it M) exists that recognizes B

– Our goal is to show that M actually does not recognize B, i.e., it accepts or rejects a string that it shouldn’t

“M recognizes B” AND “M doesn’t recognize B”, which is a contradiction
The general proof strategy is:

– Assume (for contradiction) that some DFA (call it M) exists that recognizes B
– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a DFA can no longer distinguish between them!

\[
M \text{ is correct iff } \forall z \in \Sigma^* (x \cdot z \in B \leftrightarrow y \cdot z \in B)
\]

\[
M \text{ is incorrect iff } \exists z \in \Sigma^* (x \cdot z \in B \leftrightarrow y \cdot z \in B)
\]
The general proof strategy is:

- Assume (for contradiction) that some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a DFA can no longer distinguish between them!

Key Idea 2: Our machine M has a finite number of states which means if we have *infinitely many* strings, two of them must collide!
The general proof strategy is:

– Assume (for contradiction) that some DFA (call it M) exists that recognizes B
– We want to show: M accepts or rejects a string it shouldn’t.

We choose an INFINITE set S of prefixes (which we intend to complete later).

$B = \{\text{binary palindromes}\}$ can’t be recognized by any DFA
The general proof strategy is:

- Assume (for contradiction) that some DFA (call it \(M \)) exists that recognizes \(B \)
- We want to show: \(M \) accepts or rejects a string it shouldn’t.

We choose an INFINITE set \(S \) of prefixes (which we intend to complete later). It is critical that for every pair of strings in our set there is an “accept” completion that the two strings DO NOT SHARE.

\[
x, y, z
\]

\[
1 \\
01 \\
001 \\
0001 \\
00001 \\
............
\]
B = \{binary palindromes\} can’t be recognized by any DFA

Suppose for contradiction that some DFA, \(M \), recognizes \(B \).
We show \(M \) accepts or rejects a string it shouldn’t.
Consider \(S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\} \).

Key Idea 2: Our machine has a finite number of states which means if we have infinitely many strings, two of them must collide!
$B = \{\text{binary palindromes}\}$ can’t be recognized by any DFA.

Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn’t.

Consider $S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\}$.

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \neq b$ that end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we’ve just proven they exist...we must take the ones we’re given!
B = \{binary palindromes\} can’t be recognized by any DFA

Suppose for contradiction that some DFA, \(M \), accepts \(B \).
We show \(M \) accepts or rejects a string it shouldn’t.
Consider \(S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\} \).
Since there are finitely many states in \(M \) and infinitely many strings in \(S \), there exist strings \(0^a1 \in S \) and \(0^b1 \in S \) with \(a \neq b \) that end in the same state of \(M \).

Now, consider appending \(0^a \) to both strings.

Key Idea 1: If two strings “collide” at any point, a DFA can no longer distinguish between them!
B = \{binary palindromes\} can’t be recognized by any DFA

Suppose for contradiction that some DFA, \(M\), recognizes \(B\). We show \(M\) accepts or rejects a string it shouldn’t.

Consider \(S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\}\).

Since there are finitely many states in \(M\) and infinitely many strings in \(S\), there exist strings \(0^a1 \in S\) and \(0^b1 \in S\) with \(a \neq b\) that end in the same state of \(M\).

Now, consider appending \(0^a\) to both strings.

Then, since \(0^a1\) and \(0^b1\) end in the same state, \(0^a10^a\) and \(0^b10^a\) also end in the same state, call it \(q\).

But then \(M\) makes a mistake: \(q\) needs to be an accept state since \(0^a10^a \in B\), but \(M\) would accept \(0^b10^a \notin B\) which is an error.
Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn’t. Consider $S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n : n \geq 0\}$. Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \neq b$ that end in the same state of M. Now, consider appending 0^a to both strings. Then, since 0^a1 and 0^b1 end in the same state, 0^a10^a and 0^b10^a also end in the same state, call it q. But then M must make a mistake: q needs to be an accept state since $0^a10^a \in B$, but then M would accept $0^b10^a \notin B$ which is an error.

This is a contradiction since we assumed that M recognizes B. Thus, no DFA recognizes B.

$B = \{\text{binary palindromes}\}$ can’t be recognized by any DFA
Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.”
2. Consider an INFINITE set S of prefixes (which we intend to complete later). It is imperative that for every pair of strings in our set there is an “accept” completion that the two strings DO NOT SHARE.
3. “Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M."
4. Consider appending the (correct) completion t to each of the two strings.
5. “Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L.”
6. “Thus, no DFA recognizes L.”
Prove $A = \{0^n1^n : n \geq 0\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let $S =$
Prove $A = \{0^n1^n : n \geq 0\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \geq 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \neq b$ that end in the same state in M.
Prove $A = \{0^n1^n : n \geq 0\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \geq 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \neq b$ that end in the same state in M.

Consider appending 1^a to both strings.
Prove \(A = \{0^n1^n : n \geq 0\} \) is not regular

Suppose for contradiction that some DFA, \(M \), recognizes \(A \).

Let \(S = \{0^n : n \geq 0\} \). Since \(S \) is infinite and \(M \) has finitely many states, there must be two strings, \(0^a \) and \(0^b \) for some \(a \neq b \) that end in the same state in \(M \).

Consider appending \(1^a \) to both strings.

Note that \(0^a1^a \in A \), but \(0^b1^a \notin A \) since \(a \neq b \). But they both end up in the same state of \(M \), call it \(q \). Since \(0^a1^a \in A \), state \(q \) must be an accept state but then \(M \) would incorrectly accept \(0^b1^a \notin A \) so \(M \) does not recognize \(A \).

Thus, no DFA recognizes \(A \).
Prove $P = \{\text{balanced parentheses}\}$ is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let $S =$
Prove \(P = \{ \text{balanced parentheses} \} \) is not regular

Suppose for contradiction that some DFA, \(M \), recognizes \(P \).

Let \(S = \{ (n : n \geq 0) \}. \) Since \(S \) is infinite and \(M \) has finitely many states, there must be two strings, \((a)\) and \((b)\) for some \(a \neq b \) that end in the same state in \(M \).
Prove \(P = \{\text{balanced parentheses}\} \) is not regular

Suppose for contradiction that some DFA, \(M \), recognizes \(P \).

Let \(S = \{(n : n \geq 0)\} \). Since \(S \) is infinite and \(M \) has finitely many states, there must be two strings, \((a) \) and \((b) \) for some \(a \neq b \) that end in the same state in \(M \).

Consider appending \()^a \) to both strings.
Prove $P = \{\text{balanced parentheses}\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \geq 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a) and (b) for some $a \neq b$ that end in the same state in M.

Consider appending $)a$ to both strings.

Note that $(a)^a \in P$, but $(b)^a \notin P$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $(a)^a \in P$, state q must be an accept state but then M would incorrectly accept $(b)^a \notin P$ so M does not recognize P.

Thus, no DFA recognizes P.
Showing that a Language \(L \) is not regular

1. “Suppose for contradiction that some DFA \(M \) recognizes \(L \).”

2. Consider an INFINITE set \(S \) of prefixes (which we intend to complete later). It is imperative that for every pair of strings in our set there is an “accept” completion that the two strings DO NOT SHARE.

3. “Since \(S \) is infinite and \(M \) has finitely many states, there must be two strings \(s_a \) and \(s_b \) in \(S \) for \(s_a \neq s_b \) that end up at the same state of \(M \).”

4. Consider appending the (hard) completion \(t \) to each of the two strings.

5. “Since \(s_a \) and \(s_b \) both end up at the same state of \(M \), and we appended the same string \(t \), both \(s_a t \) and \(s_b t \) end at the same state \(q \) of \(M \). Since \(s_a t \in L \) and \(s_b t \notin L \), \(M \) does not recognize \(L \).”

6. “Thus, no DFA recognizes \(L \).”
Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of prefixes with the property that, for every pair $s_a \neq s_b \in S$, there is some string t such that one of $s_a t$, $s_b t$ is in L but the other isn’t.
- If S is infinite, then L is not regular
- If S is finite, then the minimal DFA for L has precisely $|S|$ states, one reached by each member of S.
Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of prefixes with the property that, for every pair $s_a \neq s_b \in S$, there is some string t such that one of $s_a t$, $s_b t$ is in L but the other isn’t.
- If S is infinite, then L is not regular
- If S is finite, then the minimal DFA for L has precisely $|S|$ states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

- we separated exactly those states for which some t would make one accept and another not accept
Important Notes

• It is not necessary for our strings xz with $x \in L$ to allow any string in the language
 – we only need to find a small “core” set of strings that must be distinguished by the machine

• It is not true that, if L is irregular and $L \subseteq U$, then U is irregular!
 – we always have $L \subseteq \Sigma^*$ and Σ^* is regular!
 – our argument needs different answers: $xz \in L \iff yz \in L$
 for Σ^*, both strings are always in the language

Do not claim in your proof that, because $L \subseteq U$, U is also irregular.