
CSE 311: Foundations of Computing

Lecture 25: Languages vs Representations:                      

Limitations of Finite Automata and Regular Expressions



Last time: Algorithms for Regular Languages

We have seen algorithms for

• RE to NFA

• NFA to DFA

• DFA/NFA to RE (not tested)

• DFA minimization

Practice three of these in HW.

(May also be on the final.)



Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every 

subset of states of the NFA

– Power set of the set of states of the NFA

–  �-state NFA yields DFA with at most �� states

– We saw an example where roughly �� is necessary

“Is the �th char from the end a 1?”

The famous “P=NP?” question asks whether a 

similar blow-up is always necessary to get rid of 

nondeterminism for polynomial-time algorithms



Applications of FSMs

• Implementation of regular expression matching in 
programs like grep

• Control structures for sequential logic in digital 

circuits

• Algorithms for communication and cache-

coherence protocols

– Each agent runs its own FSM

• Design specifications for reactive systems

– Components are communicating FSMs



Applications of FSMs

• Formal verification of systems

– Is an unsafe state reachable?

• Computer games

– FSMs provide worlds to explore

• Minimization algorithms for FSMs can be 

extended to more general models used in

– Text prediction

– Speech recognition



Application of FSMs: Pattern matching

• Given 

– a string s of � characters

– a pattern p of � characters

– usually � ≪ �

• Find

– all occurrences of the pattern p in the string s

• Obvious algorithm: 

– try to see if p matches at each of the positions in s

stop at a failed match and try matching at the next 

position:   �(��) running time.



Application of FSMs: Pattern Matching

• With DFAs can do this in �(� + �) time.

• See Extra Credit problem on HW8 for some ideas 

of how to get to �(�� +  �) time.



The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=

Regular Languages



What languages have DFAs?  CFGs?

All of them?



Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

{001, 10, 12}



Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA

NFA

Regex

Warmup:

All finite 

languages 

are regular.



DFAs Recognize Any Finite Language



DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.



Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA

NFA

Regex

Warmup 2:

Surprising 

example here



An Interesting Infinite Regular Language 

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, …

L is regular. How could this be?   

That seems to require comparing counts...

– easy for a CFG

– but seems hard for DFAs!



An Interesting Infinite Regular Language 

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, …

L is regular. How could this be?   It is just the set of binary strings 

that are empty or begin and end with the same character!
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Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

??? Main Event:

Prove there is 

a context-free 

language 

that isn’t 

regular.

{001, 10, 12}



The language of “Binary Palindromes” is Context-Free

S → ε | 0 | 1 | 0S0 | 1S1



Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!): 

Q: What would a DFA need to keep track of to decide?

A: It would need to keep track of the “first part” of the input 

in order to check the second part against it

…but there are an infinite # of possible first parts and we 

only have finitely many states.

Proof idea: any machine that does not remember the entire first 

half will be wrong for some inputs



B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that

some DFA (call it M) exists that recognizes B



B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that 

some DFA (call it M) exists that recognizes B

– Our goal is to show that M actually does not 

recognize B

How can a DFA fail to recognize B? 

– when it accepts or rejects a string it shouldn’t.



B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that 

some DFA (call it M) exists that recognizes B

– Our goal is to show that M actually does not 

recognize B, i.e., it accepts or rejects a string that 

it shouldn’t

“M recognizes B” AND “M doesn’t recognize B”, 

which is a contradiction



B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that

some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a 

DFA can no longer distinguish between them!

x
z

y

M is correct  iff ∀z ∈ Σ* (x•z ∈ B ↔  y•z ∈ B)

M is incorrect iff ∃ z ∈ Σ* (x•z ∈ B ↮ y•z ∈ B)

x•z =  x1 x2 … xn z1 z2 … zk

y•z =  y1 y2 … ym z1 z2 … zk



The general proof strategy is:

– Assume (for contradiction) that

some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a 

DFA can no longer distinguish between them!

Key Idea 2: Our machine M has a finite number of 

states which means if we have infinitely many

strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

x
z

y



The general proof strategy is:

– Assume (for contradiction) that

some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

We choose an INFINITE set S of prefixes

(which we intend to complete later).  It is imperative 

that for every pair of strings in our set there is an 

“accept” completion that the two strings DO NOT 

SHARE.

B = {binary palindromes} can’t be recognized by any DFA

1

01

001

0001

00001

.............

______

______

______

______

______

x

y

zx,y

z



The general proof strategy is:

– Assume (for contradiction) that

some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

We choose an INFINITE set S of prefixes

(which we intend to complete later).  It is critical that 

for every pair of strings in our set there is an “accept” 

completion that the two strings DO NOT SHARE.

B = {binary palindromes} can’t be recognized by any DFA

1

01

001

0001

00001

.............

______

______

______

______

______

x

y

z

zx,y



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Key Idea 2: Our machine has a finite number of states which means 

if we have infinitely many strings, two of them must collide!



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many 

strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that 

end in the same state of M.

SUPER IMPORTANT POINT:  You do not get to choose 

what a and b are.  Remember, we’ve just proven they 

exist…we must take the ones we’re given!



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many 

strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that 

end in the same state of M.

Now, consider appending 0a to both strings.  

Key Idea 1: If two strings “collide” at any point, a DFA can no longer 

distinguish between them!

0a
a1

q

0b1



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many strings in 
S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that end in the same 
state of M.

Now, consider appending 0a to both strings. 

Then, since 0a1 and 0b1 end in the same state, 0a10a and 0b10a

also end in the same state, call it q.

But then M makes a mistake: q needs to be an accept state since 

0a10a ∈ B, but M would accept 0b10a ∉ B which is an error.

0a
a1

q
0a

0b1



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many strings in 
S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that end in the same 
state of M.

Now, consider appending 0a to both strings. 

Then, since 0a1 and 0b1 end in the same state, 0a10a and 0b10a

also end in the same state, call it q.  But then M must make a 
mistake: q needs to be an accept state since 0a10a ∈ B, but then 
M would accept 0b10a ∉ B which is an error.

This is a contradiction since we assumed that M recognizes B. 
Thus, no DFA recognizes B.

0a
a1

q
0a

0b1



Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.” 

2. Consider an INFINITE set S of prefxes (which we intend to 

complete later). It is imperative that for every pair of 

strings in our set there is an “accept” completion that the 

two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there 

must be two strings sa and sb in S for sa ≠ sb that end up at 

the same state of M.”

4. Consider appending the (correct) completion t to each of 

the two strings.

5. “Since sa and sb both end up at the same state of M, and 

we appended the same string t, both sat and sbt end at the 

same state q of M.   Since sat ∈ L and sbt ∉ L, M does not 

recognize L.”    

6. “Thus, no DFA recognizes L.”



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S =



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}.  Since S is infinite and M has finitely many 

states, there must be two strings, 0a and 0b for some a ≠ b

that end in the same state in M.



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}.  Since S is infinite and M has finitely many 

states, there must be two strings, 0a and 0b for some a ≠ b

that end in the same state in M.

Consider appending  1a to both strings.  



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}.  Since S is infinite and M has finitely many 

states, there must be two strings, 0a and 0b for some a ≠ b

that end in the same state in M.

Consider appending  1a to both strings.  

Note that 0a1a ∈ A, but 0b1a ∉ A since a ≠ b.  But they both end 

up in the same state  of M, call it q.  Since 0a1a ∈ A, state q

must be an accept state but then M would incorrectly accept 

0b1a ∉ A so M does not recognize A.    

Thus, no DFA recognizes A.



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let S =



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 

states, there must be two strings, (a and (b for some a ≠ b that 

end in the same state in M.



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 

states, there must be two strings, (a and (b for some a ≠ b that 

end in the same state in M.

Consider appending  )a to both strings.  



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 

states, there must be two strings, (a and (b for some a ≠ b that 

end in the same state in M.

Consider appending  )a to both strings.  

Note that (a)a ∈ P, but (b)a ∉ P since a ≠ b.  But they both end up 

in the same state of M, call it q.  Since (a)a ∈ P, state q must be 

an accept state but then M would incorrectly accept (b)a ∉ P so 

M does not recognize P.    

Thus, no DFA recognizes P.



Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.” 

2. Consider an INFINITE set S of prefixes (which we intend to 

complete later). It is imperative that for every pair of 

strings in our set there is an “accept” completion that the 

two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there 

must be two strings sa and sb in S for sa ≠ sb that end up at 

the same state of M.”

4. Consider appending the (hard) completion t to each of the 

two strings.

5. “Since sa and sb both end up at the same state of M, and 

we appended the same string t, both sat and sbt end at the 

same state q of M.   Since sat ∈ L and sbt ∉ L, M does not 

recognize L.”    

6. “Thus, no DFA recognizes L.”

(You need to come up with S.)

(You need to come up with a hard t for sa, sb)



Fact:  This method is optimal

• Suppose that for a language L, the set S is a largest set of 

prefixes with the property that, for every pair sa≠ sb ∈ S, 

there is some string t such that one of sat, sbt is in L but the 

other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely            

|S| states, one reached by each member of S.



Fact:  This method is optimal

• Suppose that for a language L, the set S is a largest set of 

prefixes with the property that, for every pair sa≠ sb ∈ S, 

there is some string t such that one of sat, sbt is in L but the 

other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely            

|S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

– we separated exactly those states for which some t would make 

one accept and another not accept



Important Notes

• It is not necessary for our strings xz with x ∈ L to 

allow any string in the language

– we only need to find a small “core” set of strings that 

must be distinguished by the machine

• It is not true that, if L is irregular and L ⊆ U, then

U is irregular!

– we always have L ⊆ Σ* and Σ* is regular!

– our argument needs different answers: xz ∈ L ↮ yz ∈ L

for Σ*, both strings are always in the language

Do not claim in your proof that, 

because L ⊆ U, U is also irregular


