Lecture 22: Finite State Machines
Last class: Strings this machine says are OK?

The set of all binary strings that end in 0
Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The “language recognized” by the machine is the set of strings that reach a final state from the start

<table>
<thead>
<tr>
<th>Old State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_0</td>
<td>s_1</td>
</tr>
<tr>
<td>s_1</td>
<td>s_0</td>
<td>s_2</td>
</tr>
<tr>
<td>s_2</td>
<td>s_0</td>
<td>s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
</tr>
</tbody>
</table>
Finite State Machines

• Each machine designed for strings over some fixed alphabet Σ.

• Must have a transition defined from each state for every symbol in Σ.

<table>
<thead>
<tr>
<th>Old State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_0</td>
<td>s_1</td>
</tr>
<tr>
<td>s_1</td>
<td>s_0</td>
<td>s_2</td>
</tr>
<tr>
<td>s_2</td>
<td>s_0</td>
<td>s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
</tr>
</tbody>
</table>
What language does this machine recognize?

<table>
<thead>
<tr>
<th>Old State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_0</td>
<td>s_1</td>
</tr>
<tr>
<td>s_1</td>
<td>s_0</td>
<td>s_2</td>
</tr>
<tr>
<td>s_2</td>
<td>s_0</td>
<td>s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
</tr>
</tbody>
</table>
What language does this machine recognize?

The set of all binary strings that contain 111 or don’t end in 1

<table>
<thead>
<tr>
<th>Old State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_0</td>
<td>s_1</td>
</tr>
<tr>
<td>s_1</td>
<td>s_0</td>
<td>s_2</td>
</tr>
<tr>
<td>s_2</td>
<td>s_0</td>
<td>s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
</tr>
</tbody>
</table>
Strings over \{0, 1, 2\}

\(M_1\): Strings with an even number of 2’s

So: strings with even \# of 2s

\(s_1\): — — odd \# of 2s
Strings over \{0, 1, 2\}

\(M_1: \) Strings with an even number of 2's
Given a language, how do you design a state machine for it?

Create states to remember enough (about the portion of the input string that it has already seen) to correctly answer “accept/reject” on the whole string after seeing the rest.

Add labeled edges to show how the memory (state) should be updated for each new symbol.
Strings over \(\{0, 1, 2\} \)

\(M_2 \): Strings where the sum of digits mod 3 is 0

\(S_0 \): Strings whose sum of digits mod 3 is 0

\(S_1 \): Strings

\(S_2 \): Strings

1

2
Strings over \{0, 1, 2\}

\(M_2 \): Strings where the sum of digits mod 3 is 0
Strings over \(\{0, 1, 2\} \)

\[M_2: \text{Strings where the sum of digits mod 3 is 0} \]
What language does this machine recognize?

- Even # of digits (length)
- Even # of 0s and even # of 1s
- Odd # of 0s and odd # of 1s
- $10^* \cup 01^*$
- 2nd bullet point and can't have more than 2 consecutive 0s or 1s
What language does this machine recognize?

The set of all binary strings with \# of 1’s \equiv \# of 0’s (mod 2) (both are even or both are odd).

Can you think of a simpler description?
Strings over \{0, 1, 2\}

M₁: Strings with an even number of 2’s

M₂: Strings where the sum of digits mod 3 is 0
Strings over \(\{0,1,2\} \) w/ even number of 2’s and mod 3 sum 0
Strings over \{0,1,2\} w/ even number of 2’s and mod 3 sum 0
Strings over \(\{0,1,2\}\) w/ even number of 2’s **OR** mod 3 sum 0
\(z = 101 \)

The set of binary strings with a 1 in the 3rd position from the start
The set of binary strings with a 1 in the 3rd position from the start
The set of binary strings with a 1 in the 3rd position from the end
3 bit shift register “Remember the last three bits”
The set of binary strings with a 1 in the 3rd position from the end
The set of binary strings with a 1 in the 3rd position from the end
The beginning versus the end

[Diagram of a state machine with states and transitions labeled with inputs and outputs.]