CSE 311: Foundations of Computing

Lecture 22: Finite State Machines

Last class: Strings this machine says are OK?

The set of all binary strings that end in 0

Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ.

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

What language does this machine recognize?

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

What language does this machine recognize?

The set of all binary strings that contain 111
or don't end in 1

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

$$
\begin{aligned}
& \text { So: strings ileum } 4 \text { of } 25 \\
& S_{1}:- \text { odd } 4 \text { of } 25
\end{aligned}
$$

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

State Machine Design Recipe

Given a language, how do you design a state machine for it?

Create states to remember enough
(about the portion of the input string that it has already seen) to correctly answer "accept/reject" on the whole string after seeing the rest.

Add labeled edges to show how the memory (state) should be updated for each new symbol.

Strings over $\{0,1,2\}$
M_{2} : Strings where the sum of digits $\bmod 3$ is 0

So: Strings whose Sum of digits mols iso
s_{1} : Strings
S_{2} : Strings \qquad

Strings over $\{0,1,2\}$
M_{2} : Strings where the sum of digits $\bmod 3$ is 0

Strings over $\{0,1,2\}$
M_{2} : Strings where the sum of digits $\bmod 3$ is 0

What language does this machine recognize?

- even \# of digits (length)
- even \#of Os and evenatas or add \# OS and ad el $-10^{*} \cup 01^{*}$
001000 events ofd\#1s
- 2 ne bullet pons and Cunt have more than 2 consecutive Os or 1 s

What language does this machine recognize?

The set of all binary strings with \# of 1's 三 \# of 0's (mod 2)
(both are even or both are odd).

Can you think of a simpler description?

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits $\bmod 3$ is 0

Strings over $\{0,1,2\} \mathrm{W}$ / even number of 2 's and mod 3 sum 0

Strings over $\{0,1,2\} \mathrm{w}$ / even number of 2s and mod 3 sum 0

Strings over $\{0,1,2\} \mathbf{w} /$ even number of $2, s \operatorname{OR} \bmod 3$ sum 0

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the start

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the start

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

3 bit shift register "Remember the last three bits"

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

The beginning versus the end

