CSE 311: Foundations of Computing

Lecture 21: Directed Graphs, Finite State Machines

Last time: Relations

Let A and B be sets,
A binary relation from A to B is a subset of $A \times B$

Let A be a set, A binary relation on A is a subset of $A \times A$

Last time: Properties of Relations

Let R be a relation on A.
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Functions

A function $f: A \rightarrow B$ (A as input and B as output) is a special type of relation.

A function f from A to B is a relation from A to B such that: for every $a \in A$, there is exactly one $b \in B$ with $(a, b) \in f$
i.e., for every input $a \in A$, there is one output $b \in B$.

We denote this b by $f(a)$.

Function composition: If $f: A \rightarrow B$ and $g: B \rightarrow C$ then their composition $g \circ f: A \rightarrow C$ is defined by

$$
g \circ f(a)=g(f(a))
$$

Composing Relations

Let R be a relation from A to B.
Let S be a relation from B to C.

The composition of R and $S, S \circ R$ is the relation from \boldsymbol{A} to \boldsymbol{C} defined by:
$S \circ R=\{(\mathrm{a}, \mathrm{c}): \exists \mathrm{b}$ such that $(\mathrm{a}, \mathrm{b}) \in R$ and $(\mathrm{b}, \mathrm{c}) \in S\}$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

The order of writing composition generalizes the function case

Examples

$(a, b) \in$ Parent iff b is a parent of a
$(a, b) \in$ Sister iff b is a sister of a

When is $(\mathrm{x}, \mathrm{y}) \in$ Sister \circ Parent?

When is $(\mathrm{x}, \mathrm{y}) \in$ Parent \circ Sister?

$$
S \circ R=\{(a, c) \mid \exists b \text { such that }(a, b) \in R \text { and }(b, c) \in S\}
$$

Powers of a Relation

$$
\begin{aligned}
\boldsymbol{R}^{2} & =\boldsymbol{R} \circ \boldsymbol{R} \\
& =\{(\boldsymbol{a}, \boldsymbol{c}): \exists \boldsymbol{b} \text { such that }(\boldsymbol{a}, \boldsymbol{b}) \in \boldsymbol{R} \text { and }(\boldsymbol{b}, \boldsymbol{c}) \in \boldsymbol{R}\} \\
\boldsymbol{R}^{\mathbf{0}} & =\{(\boldsymbol{a}, \boldsymbol{a}): \boldsymbol{a} \in \boldsymbol{A}\} \quad \text { "the equality relation on } \boldsymbol{A}^{\prime \prime} \\
\boldsymbol{R}^{n+1} & =\boldsymbol{R}^{\boldsymbol{n}} \circ \boldsymbol{R} \text { for } \boldsymbol{n} \geq \mathbf{0}
\end{aligned}
$$

$$
\text { e.g., } R^{1}=R^{0} \circ R=R
$$

$$
R^{2}=R^{1} \circ R=R \circ R
$$

Matrix Representation

Relation \boldsymbol{R} on $\boldsymbol{A}=\left\{a_{1}, \ldots, a_{n}\right\}$

$$
\begin{gathered}
\boldsymbol{m}_{\boldsymbol{i j}}= \begin{cases}1 & \text { if }\left(a_{i}, a_{j}\right) \in \boldsymbol{R} \\
0 & \text { if }\left(a_{i}, a_{j}\right) \notin \boldsymbol{R}\end{cases} \\
\{(1,1),(1,2),(1,4),(2,1),(2,3),(3,2),(3,3),(4,2),(4,3)\} \\
\begin{array}{|l|l|l|l|l}
1 & 1 & \mathbf{2} & \mathbf{3} & \mathbf{4} \\
\hline 2 & 1 & 0 & 1 & 0 \\
\hline \text { 3 } & 0 & 1 & 1 & 0 \\
\hline 4 & 0 & 1 & 1 & 0
\end{array}
\end{gathered}
$$

Properties using matrix representation

symmetric

anti-symmetric

Directed Graphs

$$
\begin{array}{ll}
\mathrm{G}=(\mathrm{V}, \mathrm{E}) & \mathrm{V}-\text { vertices } \\
\mathrm{E}-\text { edges, ordered pairs of vertices }
\end{array}
$$

Directed Graphs

$$
\begin{array}{lll}
\mathrm{G}=(\mathrm{V}, \mathrm{E}) & \mathrm{V}-\text { vertices } \\
\mathrm{E}-\text { edges }
\end{array} \quad \text { (relation on vertices) }
$$

Path: $v_{0}, v_{1}, \ldots, v_{k}$ with each $\left(v_{i}, v_{i+1}\right)$ in E

Directed Graphs

$\mathrm{G}=(\mathrm{V}, \mathrm{E}) \quad \mathrm{V}$ - vertices \quad (relation on vertices)
Path: $v_{0}, v_{1}, \ldots, v_{k}$ with each $\left(v_{i}, v_{i+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Directed Graphs

$\mathrm{G}=(\mathrm{V}, \mathrm{E}) \quad \mathrm{V}$ - vertices \quad (relation on vertices)
Path: $v_{0}, v_{1}, \ldots, v_{k}$ with each $\left(v_{i}, v_{i+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $v_{0}=v_{k}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Directed Graphs

$\mathrm{G}=(\mathrm{V}, \mathrm{E}) \quad \mathrm{V}-$ vertices \quad (relation on vertices)
$\mathrm{E}-$ edges
Path: $v_{0}, v_{1}, \ldots, v_{k}$ with each $\left(v_{i}, v_{i+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{0}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $\mathbf{v}_{0}=\mathbf{v}_{\mathbf{k}}$ Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Representation of Relations

Directed Graph Representation (Digraph)

$$
\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}
$$

Representation of Relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Relational Composition using Digraphs

$$
\text { If } S=\{(2,2),(2,3),(3,1)\} \text { and } R=\{(1,2),(2,1),(1,3)\}
$$

Compute $S \circ R$
1

2

Relational Composition using Digraphs

$$
\text { If } S=\{(2,2),(2,3),(3,1)\} \text { and } R=\{(1,2),(2,1),(1,3)\}
$$

Compute $S \circ R$

Relational Composition using Digraphs

$$
\text { If } S=\{(2,2),(2,3),(3,1)\} \text { and } R=\{(1,2),(2,1),(1,3)\}
$$

Compute $S \circ R$

Relational Composition using Digraphs

$$
\text { If } R=\{(1,2),(2,1),(1,3)\} \text { and } R=\{(1,2),(2,1),(1,3)\}
$$

Compute $\boldsymbol{R} \circ \boldsymbol{R}$

$$
(a, c) \in R \circ R=R^{2} \quad \text { iff } \exists b((a, b) \in R \wedge(b, c) \in R)
$$ iff $\exists b$ such that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is a path

Relational Composition using Digraphs

$$
\text { If } R=\{(1,2),(2,1),(1,3)\} \text { and } R=\{(1,2),(2,1),(1,3)\}
$$

Compute $R \circ R$

$$
(a, c) \in R \circ R=R^{2} \quad \text { iff } \exists b((a, b) \in R \wedge(b, c) \in R)
$$ iff $\exists b$ such that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is a path

Relational Composition using Digraphs

$$
\text { If } R=\{(\mathbf{1}, 2),(2,1),(1,3)\} \text { and } R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}
$$

Compute $\boldsymbol{R} \circ \boldsymbol{R}$

Special case: $R \circ R$ is paths of length 2.

- R is paths of length 1
- R^{0} is paths of length 0 (can't go anywhere)
- $R^{3}=R^{2} \circ R$ etc, so is R^{n} paths of length n

Paths in Graphs and Relations

Def: The length of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Elements of $\boldsymbol{R}^{\mathbf{0}}$ correspond to paths of length 0 .
Elements of $R^{\mathbf{1}}=R$ are paths of length 1.
Elements of R^{2} are paths of length 2.

Paths in Graphs and Relations

Def: The length of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Let \boldsymbol{R} be a relation on a set \boldsymbol{A}.
There is a path of length \boldsymbol{n} from \mathbf{a} to \mathbf{b} in the digraph for \boldsymbol{R} if and only if $(\mathbf{a}, \mathbf{b}) \in \boldsymbol{R}^{\boldsymbol{n}}$

Connectivity In Graphs

Def: Two vertices in a graph are connected iff there is a path between them.

Let \boldsymbol{R} be a relation on a set \boldsymbol{A}. The connectivity relation \boldsymbol{R}^{*} consists of the pairs (a, b) such that there is a path from a to b in \boldsymbol{R}.

Note: The Rosen book uses the wrong definition of this quantity. What the Rosen defines (ignoring $\boldsymbol{k}=\mathbf{0}$) is usually called R^{+}

How Properties of Relations show up in Graphs

Let R be a relation on A.
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

How Properties of Relations show up in Graphs

Let R be a relation on A .
R is reflexive iff $(a, a) \in R$ for every $a \in A$
$C \circ$ at every node
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$

R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
or
$\xrightarrow{\sim}$ or
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the relation transitive and reflexive.

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation \boldsymbol{R} is the connectivity relation \boldsymbol{R}^{*}

n-ary Relations

Let $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ be sets. An \boldsymbol{n}-ary relation on these sets is a subset of $\boldsymbol{A}_{\mathbf{1}} \times \boldsymbol{A}_{\mathbf{2}} \times \cdots \times \boldsymbol{A}_{\boldsymbol{n}}$.

Relational Databases

STUDENT

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Back to Languages

AND NOW BACK TO OUR REGULARLY SCMIDULED

 PROGRAMMNGSelecting strings using labeled graphs as "machines"

Finite State Machines

Which strings does this machine say are OK?

Which strings does this machine say are OK?

The set of all binary strings that end in 0

Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ.

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

What language does this machine recognize?

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

What language does this machine recognize?

The set of all binary strings that contain 111 or don't end in 1

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

