
CSE 311: Foundations of Computing

Lecture 21:  Directed Graphs, Finite State Machines



Last time: Relations

Let A and B be sets,  

A binary relation from A to B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of A × A



Last time: Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b,a) ∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

R is transitive iff (a,b)∈ R and (b,c)∈ R implies (a,c) ∈ R



Functions

A function � ∶ � → � (� as input and � as output) is a 

special type of relation.

A function � from � to � is a relation from � to � such that:

for every � ∈ �, there is exactly one 
 ∈ � with (�, 
) ∈ �

i.e., for every input � ∈ �, there is one output 
 ∈ �.

We denote this 
 by �(�).

Function composition:  If � ∶ � → � and � ∶ � → � then 

their composition � ∘ �: � → � is defined by 

� ∘ � � = �(� � )



Composing Relations

Let � be a relation from � to �.

Let � be a relation from � to �.

The composition of � and �,  � ∘ � is the relation 

from � to � defined by:

� ∘ � = {(a, c) : ∃ b such that (a, b) ∈ � and (b, c) ∈ �}

Intuitively, a pair is in the composition if there is a 

“connection” from the first to the second.

The order of writing composition generalizes the function case



Examples

(a,b) ∈ Parent iff b is a parent of a

(a,b) ∈ Sister iff b is a sister of a

When is (x,y) ∈ Sister ∘ Parent?

When is (x,y) ∈ Parent ∘ Sister?

S ∘ R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}



Powers of a Relation

��   = � ∘ �

= { �, � ∶ ∃� such that �, � ∈ � and �, � ∈ � }

�'     = { �, � ∶ � ∈ �} “the equality relation on �”

�()* = �( ∘ � for  ( ≥ '

e.g., �*  =  �' ∘  �  =   �

��  =  �* ∘  �  =   � ∘ �



Matrix Representation

Relation � on � = {�,, … , �.}

{ (1, 1), (1, 2),  (1, 4),  (2, 1),  (2, 3), (3, 2), (3, 3), (4, 2), (4, 3) }

1 2 3 4

1 1 1 0 1

2 1 0 1 0

3 0 1 1 0

4 0 1 1 0

/01 =
1      if  �5 , �6 ∈ � 

0      if  �5 , �6 ∉ �



Properties using matrix representation
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Same when 

rows & columns 

swapped

No 1-1 pairs



Directed Graphs

G = (V, E) V – vertices
E – edges, ordered pairs of vertices 



Directed Graphs

Path:  v0, v1, …, vk with each (vi, vi+1) in E

G = (V, E) V – vertices
E – edges (relation on vertices)
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Directed Graphs
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Representation of Relations

Directed Graph Representation (Digraph)

{(a, b),  (a, a),  (b, a), (c, a),  (c, d),  (c, e) (d, e) }

a d

e

b c



Representation of Relations

Directed Graph Representation (Digraph)

{(a, b),  (a, a),  (b, a), (c, a),  (c, d),  (c, e) (d, e) }

a d

e

b c



Relational Composition using Digraphs

If � = �, � , �, 8 , 8, * and � = { *, � , �, * , *, 8 }

Compute � ∘ �

1

3

2 1

3
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Relational Composition using Digraphs

If � = *, � , �, * , *, 8 and � = { *, � , �, * , *, 8 }

Compute � ∘ �

1

3

2 1

3

2

�, 9 ∈ : ∘ : = :; iff ∃
 ( �, 
 ∈ : ⋀ (
, 9) ∈ :)

iff ∃
 such that a, b, c is a path



Relational Composition using Digraphs

If � = *, � , �, * , *, 8 and � = { *, � , �, * , *, 8 }

Compute � ∘ �

1

3

2 1

3

2

Special case:  � ∘ � is paths of length 2.

• � is paths of length 1

• �' is paths of length 0 (can’t go anywhere)

• �8 = �� ∘ � etc, so is �( paths of length n



Paths in Graphs and Relations

Def: The length of a path in a graph is the number of 

edges in it (counting repetitions if edge used > once).

Elements of �' correspond to paths of length 0.

Elements of �* = � are paths of length 1.

Elements of �� are paths of length 2.

...



Paths in Graphs and Relations

Let � be a relation on a set �.

There is a path of length ( from a to b in the digraph 

for � if and only if (a,b) � �(

Def: The length of a path in a graph is the number of 

edges in it (counting repetitions if edge used > once).



Connectivity In Graphs

Let � be a relation on a set �.  The connectivity

relation �∗ consists of the pairs (�, 
) such that there is 

a path from � to 
 in �.

Note:  The Rosen book uses the wrong definition of this quantity.

What the Rosen defines (ignoring > = ') is usually called R+

Def: Two vertices in a graph are connected iff there is a 

path between them.



How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R



How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

at every node

or

or or



Transitive-Reflexive Closure

Add the minimum possible number of edges to make the 

relation transitive and reflexive.



Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to 

make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation � is the 

connectivity relation �*



?-ary Relations

Let �*, ��, … , �( be sets.  An (-ary relation on 

these sets is a subset of �*×��× ⋯ × �(.



Relational Databases

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT



Back to Languages



Selecting strings using labeled graphs as “machines”



Finite State Machines

“Start 

here”

“If I get this symbol, follow the 

arrow…”
The circles are called “states”

We’re only in a single state at 

any point in time…

The “double circle” means “the 

input is good if it ends here”



Which strings does this machine say are OK?



Which strings does this machine say are OK?

The set of all binary 

strings that end in 0



Finite State Machines

• States

• Transitions on input symbols

• Start state and final states

• The “language recognized” by the machine is the 

set of strings that reach a final state from the start

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3


