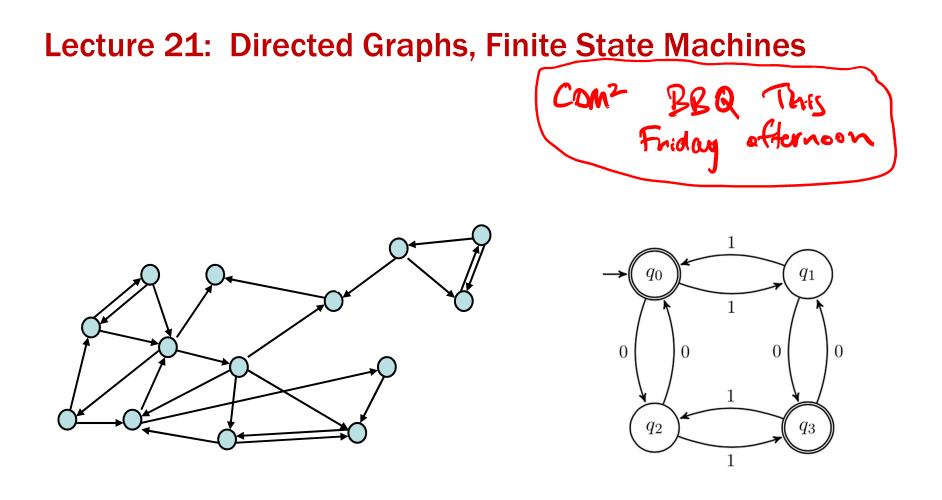
CSE 311: Foundations of Computing



Let A and B be sets, A **binary relation from** A **to** B is a subset of $A \times B$

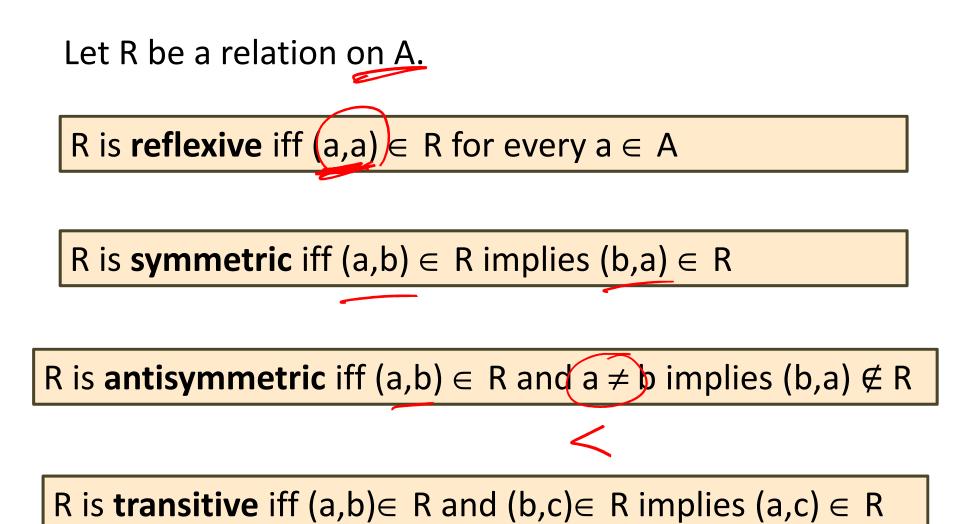
REAXB

Let A be a set,

A binary relation on A is a subset of $A \times A$

RGAXA

Last time: Properties of Relations



A function $f : A \rightarrow B$ (A as input and B as output) is a special type of relation.

A **function** f **from** A **to** B is a relation from A to B such that: for every $a \in A$, there is *exactly one* $b \in B$ with $(a, b) \in f$

i.e., for every input $a \in A$, there is one output $b \in B$. We denote this b by f(a).

Function composition: If $f : A \to B$ and $g : B \to C$ then their **composition** $g \circ f : A \to C$ is defined by $(g \circ f)(a) = g(f(a))$ Let *R* be a relation from *A* to *B*. Let *S* be a relation from *B* to C.

The composition of *R* and *S*, $S \circ R$ is the relation from *A* to *C* defined by:

 $S \circ R = \{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

The order of writing composition generalizes the function case

$(a,b) \in Parent iff b is a parent of a$ $(a,b) \in Sister iff b is a sister of a$

When is $(x,y) \in \text{Sister } \circ \text{Parent?}$

When is $(x,y) \in \text{Parent} \circ \text{Sister?}$ $(x,y) \in \text{Revent} \cap A$

 $S \circ R = \{(a, c) \mid \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$

$$R^{2} = R \circ R$$

= {(a, c) : \exists b such that (a, b) \in R and (b, c) \in R }

$$R^0 = \{(a, a) : a \in A\}$$
 "the equality relation on A "
 $R^{n+1} = R^n \circ R$ for $n \ge 0$

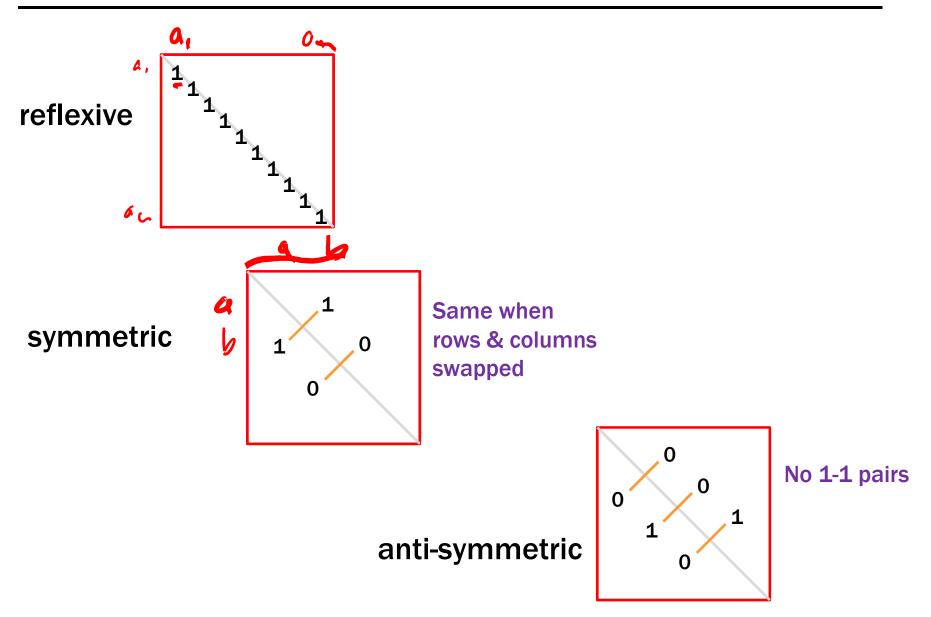
e.g.,
$$\underline{R^1} = \underline{R^0} \circ R = R$$

 $\overline{R^2} = \overline{R^1} \circ \overline{R} = R \circ R$

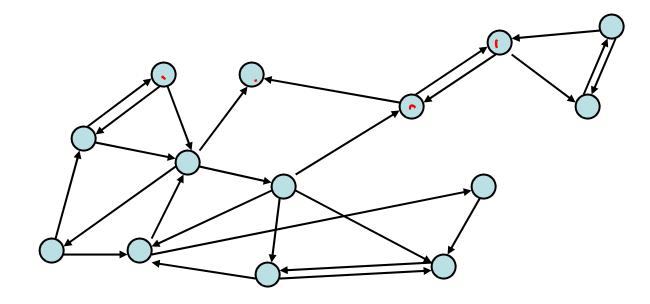
Relation
$$\mathbf{R}$$
 on $\mathbf{A} = \{a_1, \dots, a_n\}$
$$\mathbf{m}_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \mathbf{R} \\ 0 & \text{if } (a_i, a_j) \notin \mathbf{R} \end{cases}$$

 $\{ (1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3) \}$

Properties using matrix representation

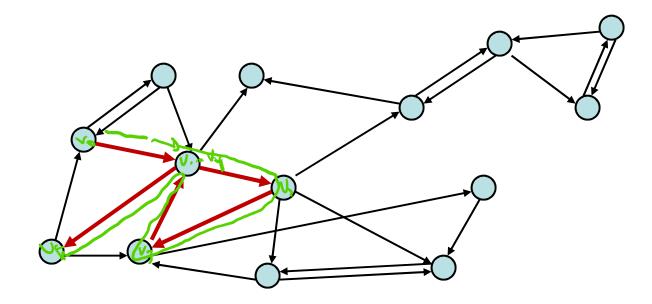


G = (V, E) V - vertices E - edges, ordered pairs of vertices $E \leq V \times V$

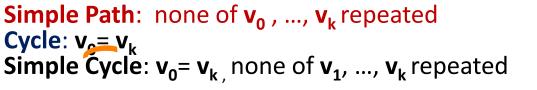


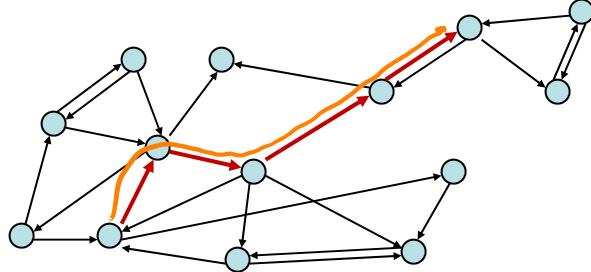
G = (V, E) V - vertices E - edges (relation on vertices)

Path: v_0 , v_1 , ..., v_k with each (v_i , v_{i+1}) in E



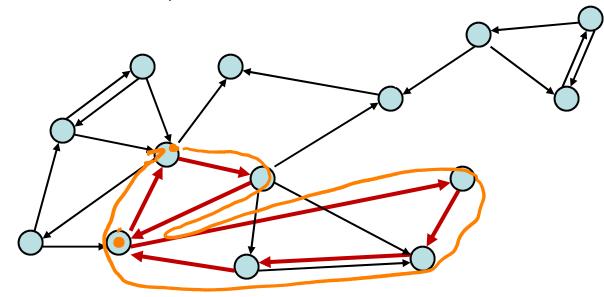
Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

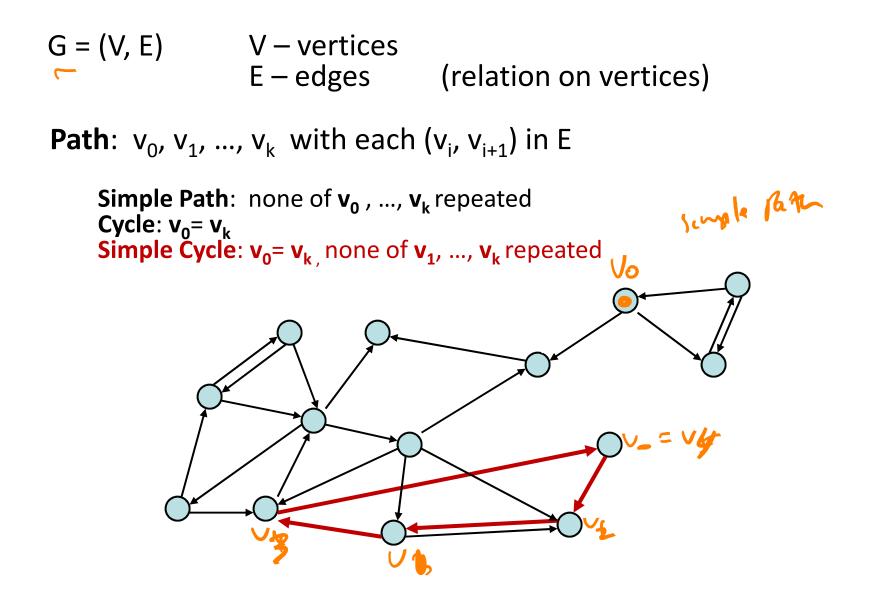




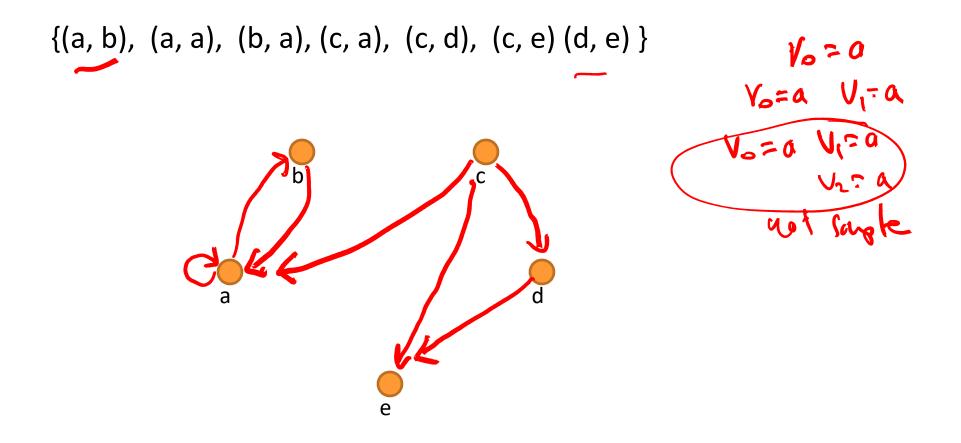
Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

Simple Path: none of v_0 , ..., v_k repeated Cycle: $v_0 = v_k$ Simple Cycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated



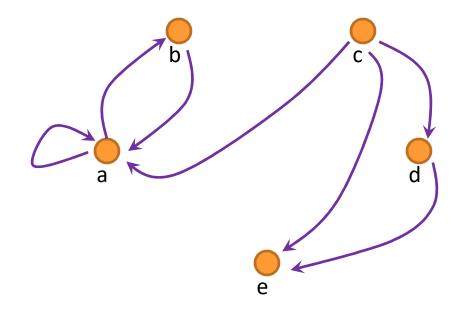


Directed Graph Representation (Digraph)

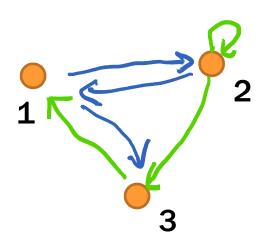


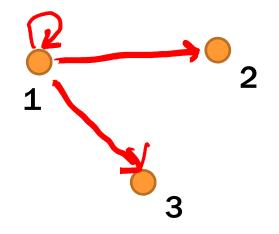
Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }



If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $S \circ R$

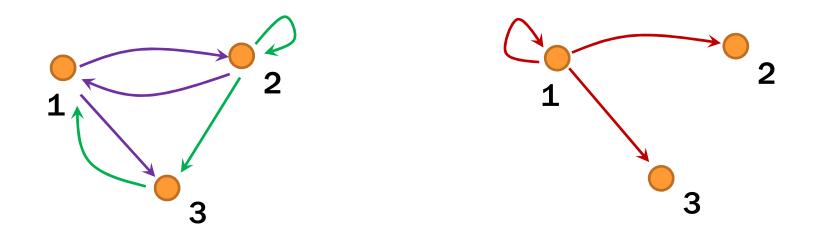




If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $S \circ R$

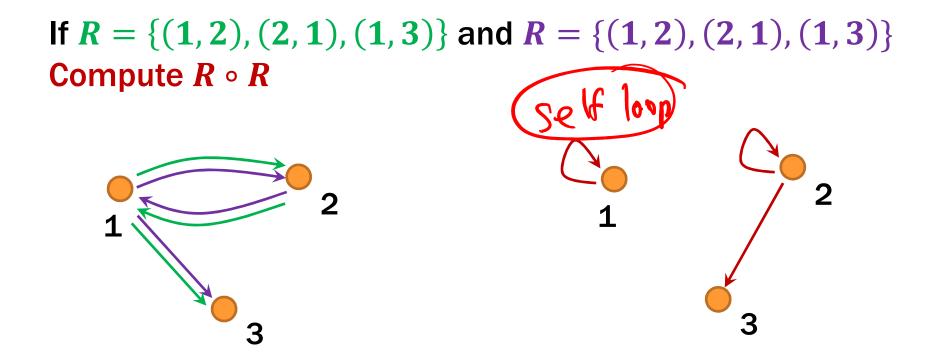


If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $S \circ R$



If $R = \{(1, 2), (2, 1), (1, 3)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ R$ $(,n)^{(21)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$ $(2, 1)^{(1)}$

 $(a,c) \in R \circ R = R^2$ iff $\exists b \ ((a,b) \in R \land (b,c) \in R)$ iff $\exists b$ such that a, b, c is a path



Special case: *R* • *R* is paths of length 2.

- *R* is paths of length 1
- *R*⁰ is paths of length 0 (can't go anywhere)
- $R^3 = R^2 \circ R$ etc, so is R^n paths of length n

_ _ _

Def: The **length** of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

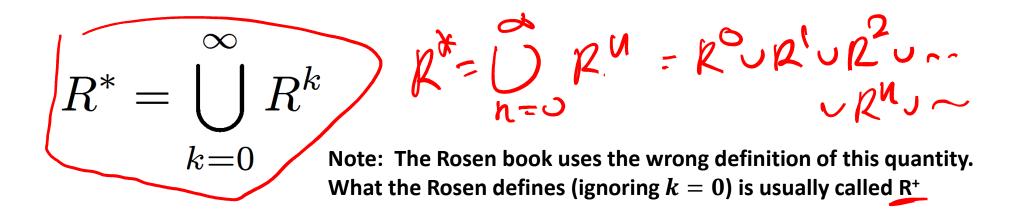
Elements of R^0 correspond to paths of length 0. Elements of $R^1 = R$ are paths of length 1. Elements of R^2 are paths of length 2. Def: The **length** of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Let **R** be a relation on a set **A**.

There is a path of length n from a to b in the digraph for R if and only if $(a,b) \in R^n$ **Def**: Two vertices in a graph are **connected** iff there is a path between them.

V.

Let **R** be a relation on a set **A**. The **connectivity** relation \mathbf{R}^* consists of the pairs (a, b) such that there is a path from a to b in **R**.



How Properties of Relations show up in Graphs

Let R be a relation on A.

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

2

R is symmetric iff $(a,b) \in R$ implies $(b, a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

How Properties of Relations show up in Graphs

Let R be a relation on A.



之 at every node

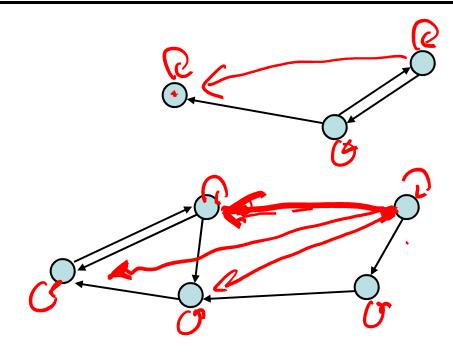
R is symmetric iff $(a,b) \in R$ implies $(b, a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

or or

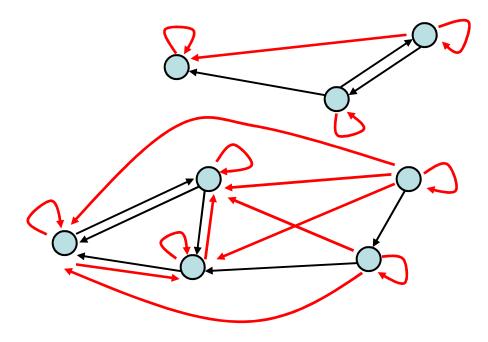
R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Transitive-Reflexive Closure



Add the **minimum possible** number of edges to make the relation transitive and reflexive.

Transitive-Reflexive Closure



Relation with the **minimum possible** number of **extra edges** to make the relation both transitive and reflexive.

The **transitive-reflexive closure** of a relation R is the connectivity relation R^*

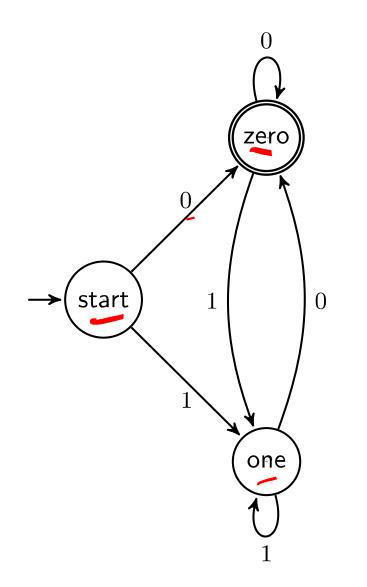
Let $A_1, A_2, ..., A_n$ be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$.

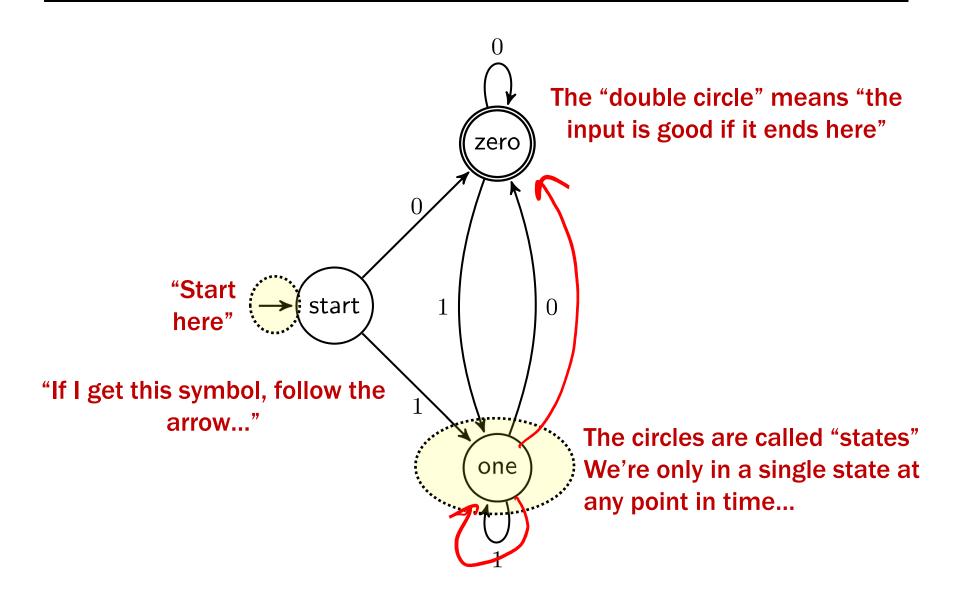
Relational Databases

STUDENT

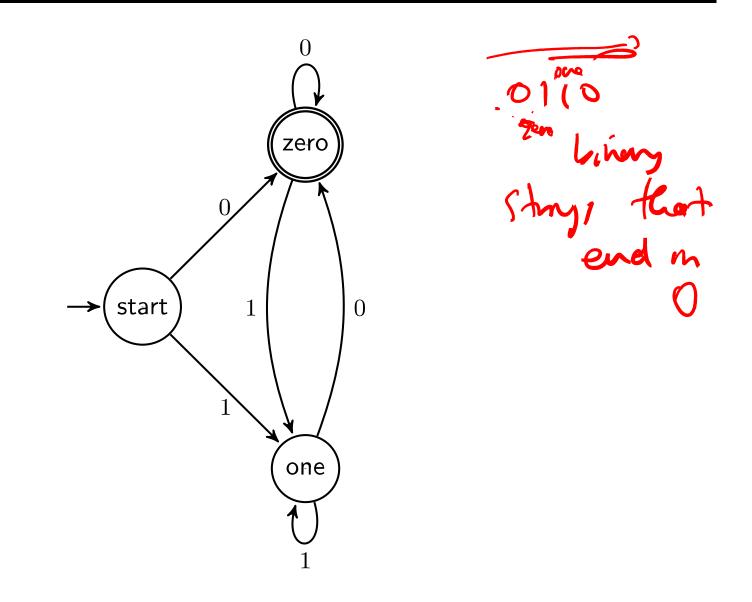
Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21
	1	$\mathbf{\lambda}$	1

Selecting strings using labeled graphs as "machines"

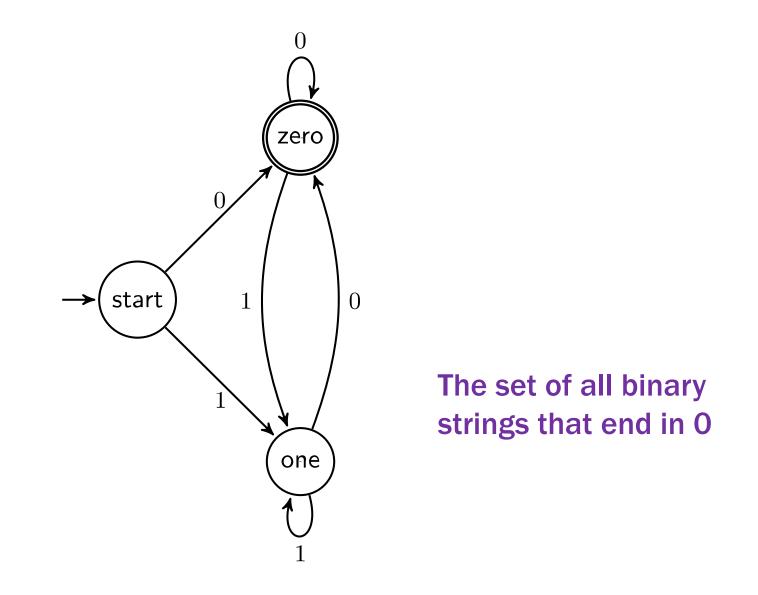




Which strings does this machine say are OK?



Which strings does this machine say are OK?



Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
s ₀	s ₀	S ₁
S ₁	s ₀	s ₂
s ₂	s ₀	s ₃
S ₃	S ₃	S ₃

