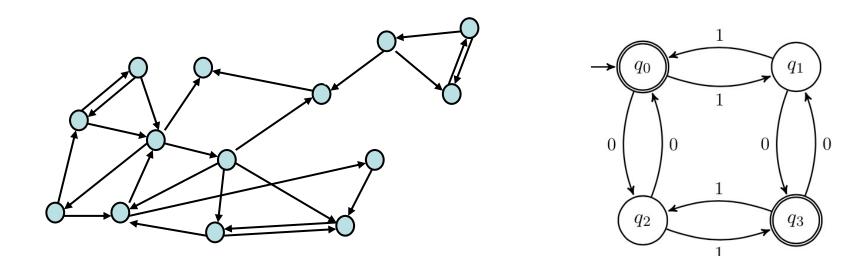
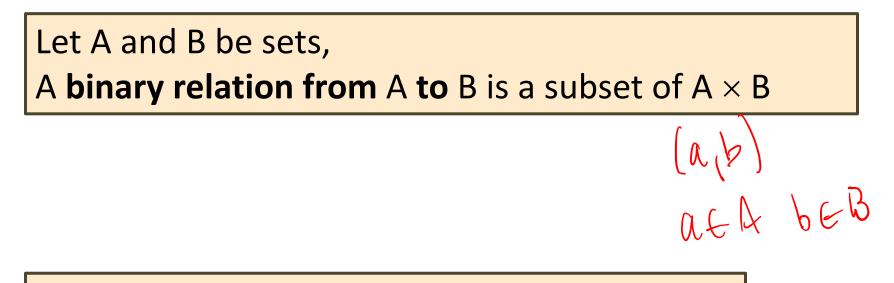
CSE 311: Foundations of Computing

Lecture 21: Directed Graphs, Finite State Machines





Let A be a set, A **binary relation on** A is a subset of A × A

Relations You Already Know

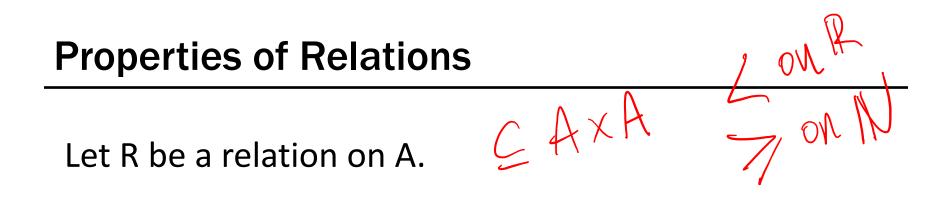
 \geq on $\mathbb{N} \subseteq \mathbb{N} \times \mathbb{N}$ (2,1) 6 7 That is, $\{(x,y) : x \ge y \text{ and } x, y \in \mathbb{N}\}$ $||_{1}) \in 7$ < on \mathbb{R} $\left(\left| \begin{array}{c} 2 \end{array}\right) \notin 7_{1} \right)$ That is, $\{(x,y) : x < y \text{ and } x, y \in \mathbb{R}\}$ = on \sum^{*} That is, $\{(x,y) : x = y \text{ and } x, y \in \Sigma^*\}$ $= on \mathcal{P}(U) \text{ for universe U} \qquad \bigcup = 3 (1, 1) \frac{3}{3} \frac{3}{3} \frac{3}{5} \frac{3}$ \subseteq on $\mathcal{P}(U)$ for universe U

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

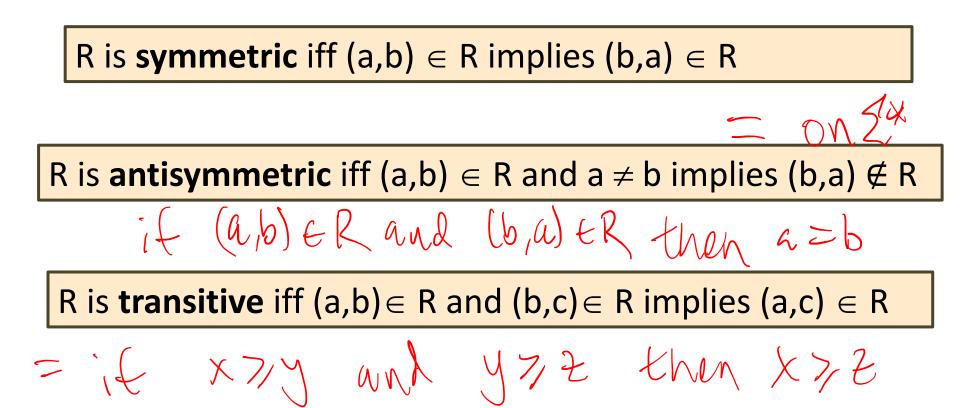
$$R_2 = \{(x, y) : x \equiv y \pmod{5} \}$$

$$\mathbf{R}_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}$$

R₄ = {(s, c) : student s has taken course c }



R is **reflexive** iff $(a,a) \in R$ for every $a \in A$



- \geq on $\mathbb N$:
- < on $\mathbb R$:
- = on Σ^* :
- \subseteq on $\mathcal{P}(\mathsf{U})$:
- $R_2 = \{(x, y) : x \equiv y \pmod{5}\}:$
- $\mathbf{R}_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}:$

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$ R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$ R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$ R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

- \geq on \mathbb{N} : Reflexive, Antisymmetric, Transitive
- < on \mathbb{R} : Antisymmetric, Transitive
- = on Σ^* : Reflexive, Symmetric, Antisymmetric, Transitive
- \subseteq on $\mathcal{P}(U)$: Reflexive, Antisymmetric, Transitive
- $R_2 = \{(x, y) : x \equiv y \pmod{5}\}$: Reflexive, Symmetric, Transitive
- $R_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}$: Antisymmetric

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$ R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$ R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$ R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ A function $f : A \rightarrow B$ (A as input and B as output) is a special type of relation.

A **function** f **from** A **to** B is a relation from A to B such that: for every $a \in A$, there is *exactly one* $b \in B$ with $(a, b) \in f$

i.e., for every input $a \in A$, there is one output $b \in B$. We denote this b by f(a).

Function composition: If $f : A \to B$ and $g : B \to C$ then their **composition** $g \circ f : A \to C$ is defined by $g \circ f(a) = g(f(a))$

Let *R* be a relation from *A* to *B*.
$$\subseteq A \times B$$

Let *S* be a relation from *B* to *C*. $\subseteq B \times C$

The composition of R and S, $S \circ R$ is the relation from A to C defined by:

 $S \circ R = \{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

The order of writing composition generalizes the function case

$(a,b) \in Parent iff b is a parent of a$ $(a,b) \in Sister iff b is a sister of a$

When is $(x,y) \in Sister \circ Parent?$

When is $(x,y) \in Parent \circ Sister?$

 $S \circ R = \{(a, c) \mid \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$

 $R^2 = R \circ R$ = {(a, c) : \exists b such that (a, b) \in R and (b, c) \in R }

$$R^{0} = \{(a, a) : a \in A\}$$
 "the equality relation on A "

$$R^{n+1} = R^{n} \circ R \text{ for } n \ge 0$$

$$R^{n+1} = R^{n} \circ R \text{ for } n \ge 0$$

$$R^{n} = R^{n} \circ R$$

e.g., $R^{1} = R^{0} \circ R = R$

$$R^{2} = R^{1} \circ R = R \circ R$$

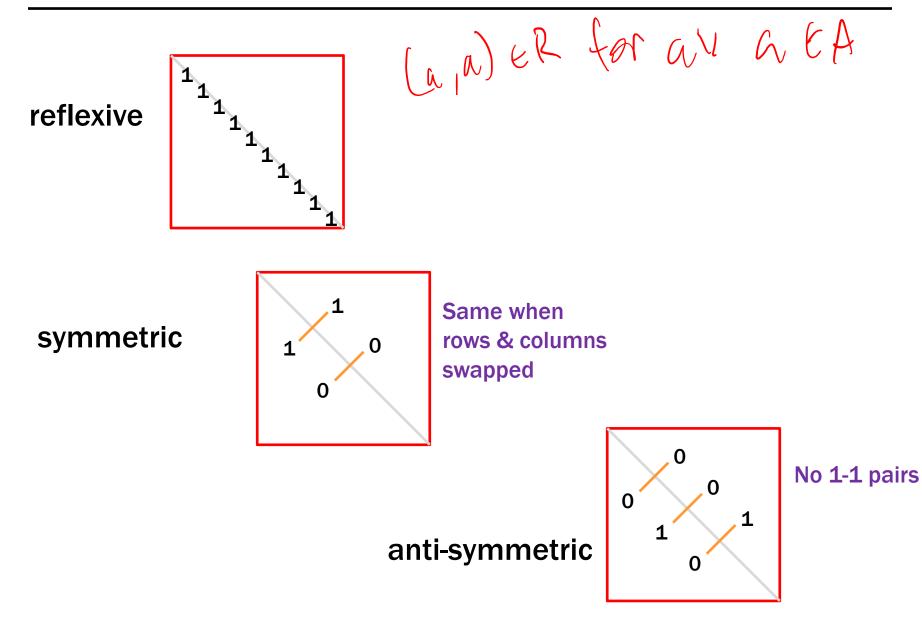
Relation **R** on
$$\mathbf{A} = \{a_1, \dots, a_n\}$$

$$\boldsymbol{m}_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \boldsymbol{R} \\ 0 & \text{if } (a_i, a_j) \notin \boldsymbol{R} \end{cases}$$

 $\{\,(1,\,1),\,(1,\,2),\,\,(1,\,4),\,\,(2,\,1),\,\,(2,\,3),\,(3,\,2),\,(3,\,3),\,(4,\,2),\,(4,\,3)\,\}$

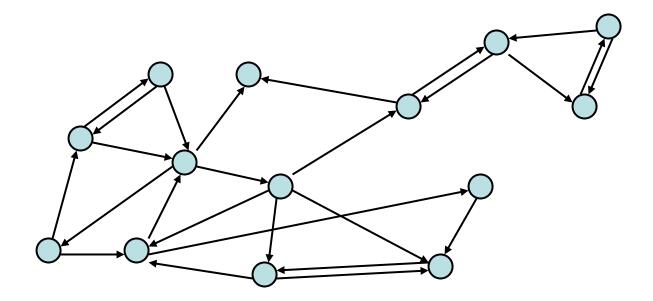
	1	2	3	4
1	1	1	0	1
2	1	0	1	0
3	0	1	1	0
4	0	1	1	0

Properties using matrix representation



Directed Graphs

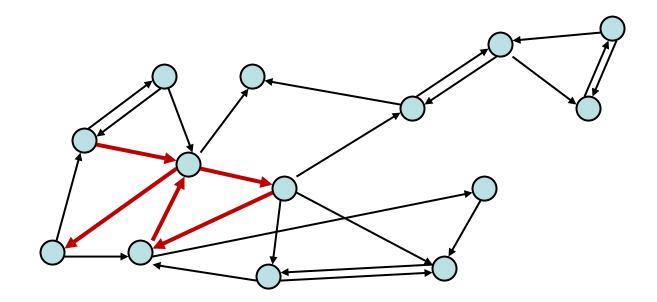
G = (V, E) V - vertices E - edges, ordered pairs of vertices



Directed Graphs

G = (V, E) V - vertices E - edges (relation on vertices)

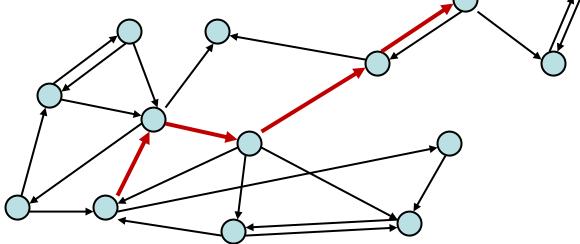
Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E



G = (V, E) V - vertices E - edges (relation on vertices)

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

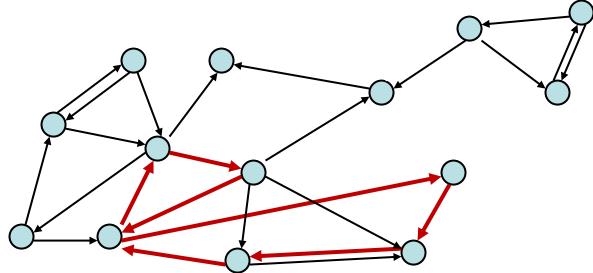
```
Simple Path: none of v_0, ..., v_k repeated
Cycle: v_0 = v_k
Simple Cycle: v_0 = v_{k_1} none of v_1, ..., v_k repeated
```



G = (V, E) V – vertices E – edges (relation on vertices)

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

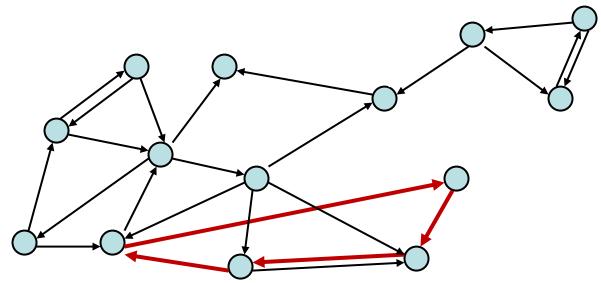
Simple Path: none of v_0 , ..., v_k repeated Cycle: $v_0 = v_k$ Simple Cycle: $v_0 = v_{k_1}$ none of v_1 , ..., v_k repeated



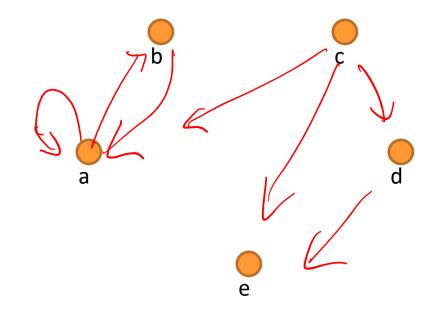
G = (V, E) V - vertices E - edges (relation on vertices)

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

Simple Path: none of v_0 , ..., v_k repeated Cycle: $v_0 = v_k$ Simple Cycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated

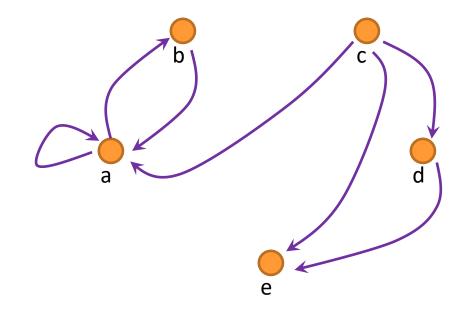


Directed Graph Representation (Digraph) $\sqrt{2} = \frac{1}{2} \alpha_{0} (l_{1} \lambda_{1} e^{2})$ $\sqrt{2} = \frac{1}{2} (a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }$

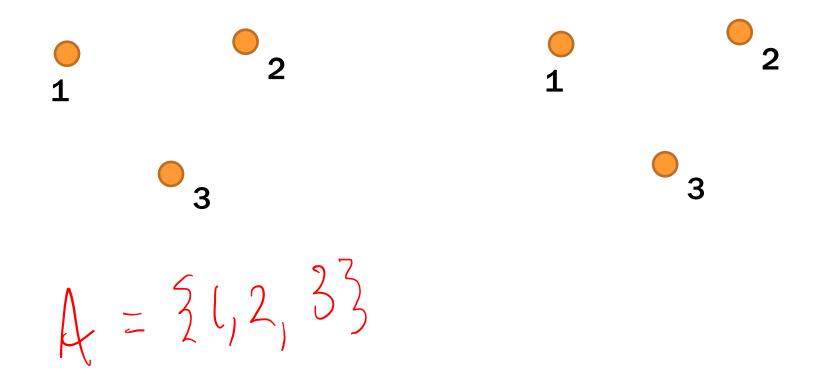


Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }



If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $S \circ R$



If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $S \circ R$

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $S \circ R$

If $R = \{(1, 2), (2, 1), (1, 3)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ R$

 $(a,c) \in R \circ R = R^2$ iff $\exists b \ ((a,b) \in R \land (b,c) \in R)$ iff $\exists b$ such that a, b, c is a path

If $R = \{(1, 2), (2, 1), (1, 3)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ R$

 $(a,c) \in R \circ R = R^2$ iff $\exists b \ ((a,b) \in R \land (b,c) \in R)$ iff $\exists b$ such that a, b, c is a path

If $R = \{(1, 2), (2, 1), (1, 3)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ R$

Special case: *R* • *R* is paths of length 2.

- *R* is paths of length 1
- **R**⁰ is paths of length 0 (can't go anywhere)
- $R^3 = R^2 \circ R$ etc, so is R^n paths of length n

Def: The **length** of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Elements of R^0 correspond to paths of length 0. Elements of $R^1 = R$ are paths of length 1. Elements of R^2 are paths of length 2.

...

Def: The **length** of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Let **R** be a relation on a set **A**.

There is a path of length n from a to b in the digraph for R if and only if $(a,b) \in R^n$

 $R^* = | \vec{} | R^k$

k=0

Def: Two vertices in a graph are **connected** iff there is a path between them.

Let **R** be a relation on a set **A**. The **connectivity** relation \mathbf{R}^* consists of the pairs (a, b) such that there is a path from a to b in **R**.

Note: The Rosen book uses the wrong definition of this quantity. What the Rosen defines (ignoring k = 0) is usually called R⁺

How Properties of Relations show up in Graphs

Let R be a relation on A.

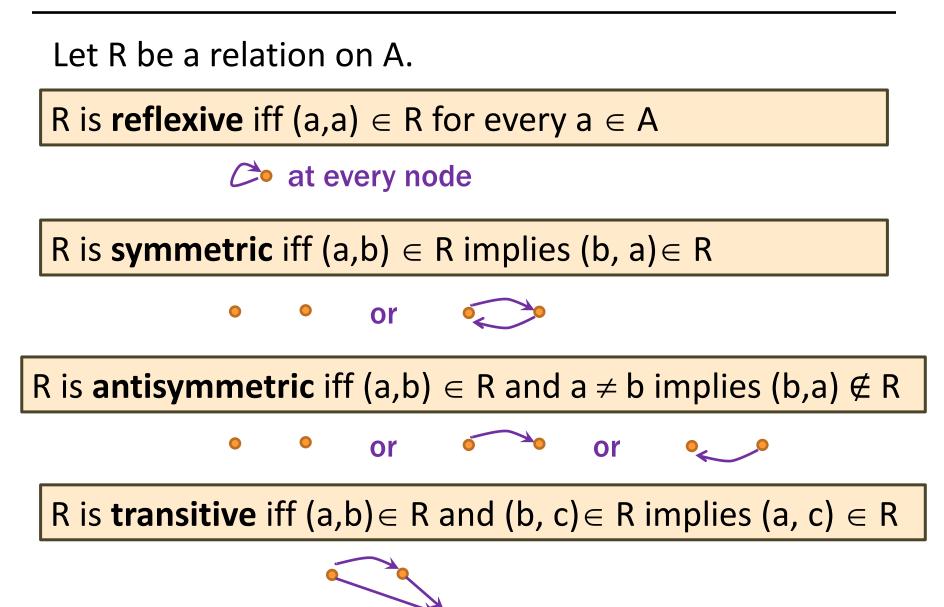
R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$

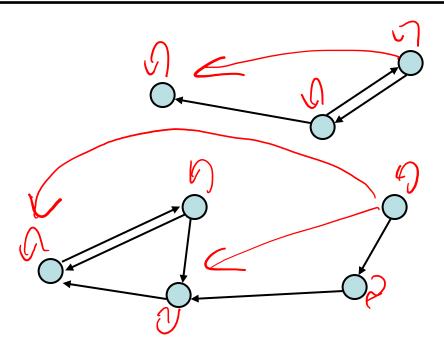
R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

How Properties of Relations show up in Graphs

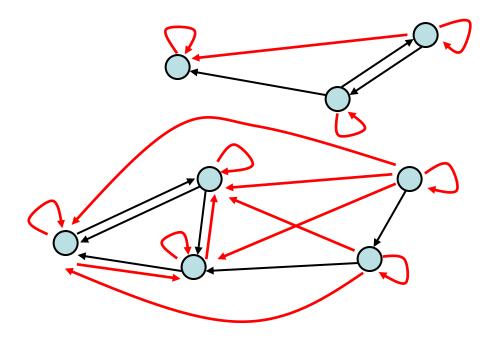


Transitive-Reflexive Closure



Add the **minimum possible** number of edges to make the relation transitive and reflexive.

Transitive-Reflexive Closure



Relation with the **minimum possible** number of **extra edges** to make the relation both transitive and reflexive.

The **transitive-reflexive closure** of a relation R is the connectivity relation R^*

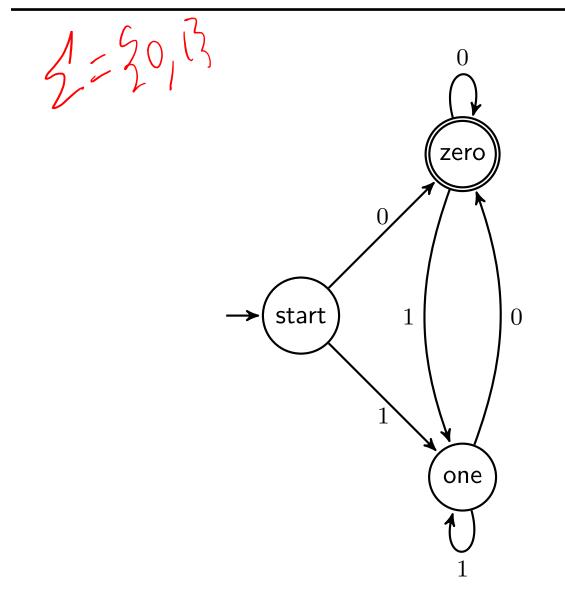
Let $A_1, A_2, ..., A_n$ be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$.

STUDENT

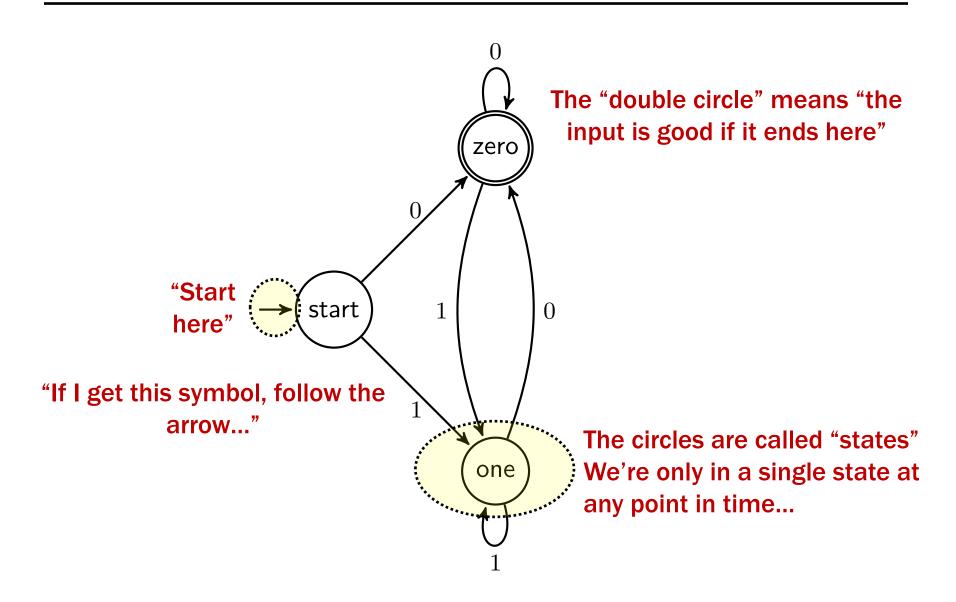
Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Back to Languages

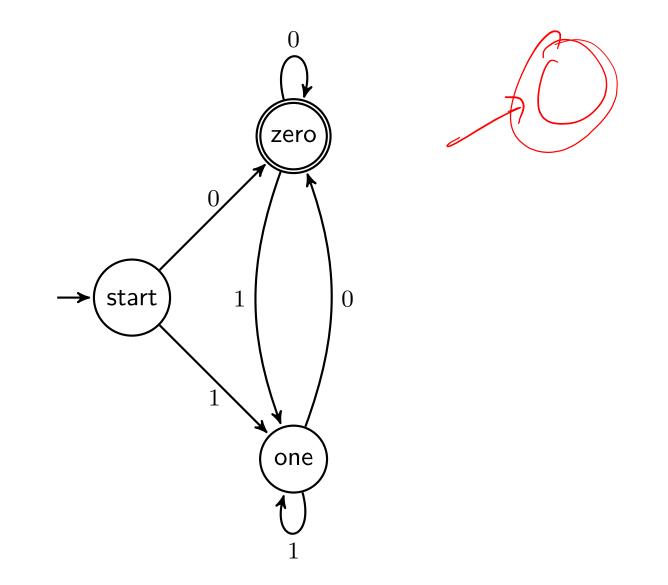
Selecting strings using labeled graphs as "machines"



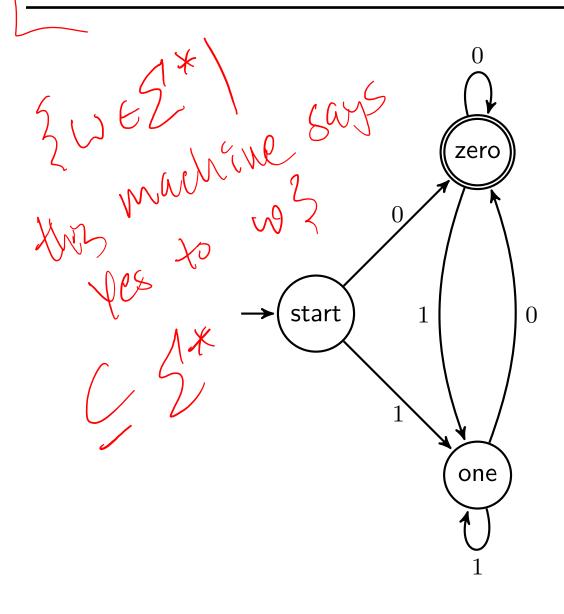
Finite State Machines



Which strings does this machine say are OK?



Which strings does this machine say are OK?



The set of all binary strings that end in 0