
CSE 311: Foundations of Computing

Lecture 20:  CFGs, Relations



Last class: Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set 
of substitution rules involving
– Alphabet Σ of terminal symbols that can’t be replaced
– A finite set V of variables that can be replaced
– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as
A → w1 |  w2 | ⋯ | wk

where each wi is a string of variables and terminals
– that is wi ∈ (V ∪ Σ)*



Last class: How CFGs generate strings

• Begin with “S”

• If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A
– A → w1 |  w2 | ⋯ | wk
– Write this as    xAy ⇒ xwy
– Repeat until no variables left

• The set of strings the CFG describes are all strings, 
containing no variables, that can be generated in this 
manner after a finite number of steps



Last class: Examples

Grammar Language

S → 0S | S1 | ε 0*1*

S → 0S0 | 1S1 | 0 | 1 | ε The set of all binary palindromes

S → 0S1 | ε &'(': ' ≥ &
S → 0S11 | ε &'(+': ' ≥ &
S → A10
A → 0A1 | ε

&'(',(&: ' ≥ &

S → (S) | SS | ε The set of all strings of matched 
parentheses



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

S → SS | 0S1 | 1S0 | ε

A standard structural induction can show that everything 
generated by S has an equal # of 0s and 1s

Intuitively, why does this generate all such strings?



Let - ∈ {0,1}∗. Define 45 6 to be the # of 0s minus # 
of 1s in the first 6 characters of -.

E.g., for x = 011100

45 6 = 0 when first 6 characters have #0s = #1s
– starts out at 0 45 0 = 0
– ends at 0 45 8 = 0

0     1     2     3     4     5     6

Example Context-Free Grammars

4
# 0s − # 1s so far



Three possibilities for 45(6) for 6 ∈ {1, … , 8 − 1}
• 45 6 > 0 for all such 6

• 45 6 < 0 for all such 6

• 45 6 = 0 for some such 6

Example Context-Free Grammars

0     1                         n-1 n

S → 0S1

S → 1S0

S → SS

0     1                         n-1 n

0     1                         n-1 n

1

1



Simple Arithmetic Expressions

E→ E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y



Simple Arithmetic Expressions

E→ E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y

E ⇒ E+E ⇒ (E)+E ⇒ (E∗E)+E ⇒ (2∗E)+E ⇒ (2∗x)+E ⇒ (2∗x)+y



Parse Trees 

Suppose that grammar G generates a string x
• A parse tree of x for G has

– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by 

symbols of w left-to-right  for some rule A → w
– The symbols of x label the leaves ordered left-to-right

S → 0S0 | 1S1 | 0 | 1 | ε

S

0 0S

S1 1

1
Parse tree of 01110



Simple Arithmetic Expressions

E→ E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in two ways that give two different 
parse trees



Simple Arithmetic Expressions

E→ E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in ways that give two different parse trees

E ⇒ E+E ⇒ x+E ⇒ x+E∗E ⇒ x+y∗E ⇒ x+y∗z
(add x to the product of y and z)

E ⇒ E∗E ⇒ E+E∗E ⇒ x+E∗E
⇒ x+y∗E ⇒ x+y∗z

(add x to y, then multiply by z)

E

E

+
x

E*

z
y

E E

E

E +
x

E

*
zy

E E



building precedence in simple arithmetic expressions

• E – expression  (start symbol)
• T – term   F – factor   I – identifier  N - number

E → T | E+T
T → F | F∗T
F → (E) | I | N
I → x | y | z
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

T

+

x

T

*
zy

E

F



building precedence in simple arithmetic expressions

• E – expression  (start symbol)
• T – term   F – factor   I – identifier  N - number

E → T | E+T
T → F | F∗T
F → (E) | I | N
I → x | y | z
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

F T*
z

T

?

No longer
allows:



CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable 
recursively defines the set of strings of terminals 
that S can generate

• A CFG with more than one variable is a 
simultaneous recursive definition of the sets of 
strings generated by each of its variables
– sometimes necessary to use more than one



Theorem: For all regular expressions A  there is a 
CFG that generates precisely the strings A matches

CFGs and regular expressions

Proof:  Structural Induction



CFGs can do everything REs can

• CFG to match RE ε

S → ε

• CFG to match RE a (for any a ∈ Σ)

S → a



CFGs can do everything REs can

Suppose CFG with start symbol SA matches RE A 
CFG with start symbol SB matches RE B
(Then rename variables so no vars used in both)

• CFG to match RE A ∪ B
Add S → SA | SB

+ rules from both CFGs

• CFG to match RE AB
Add  S → SA SB

+ rules from both CFGs



CFGs can do everything that REs can

• CFG to match RE A*

Add S → SA S | ε
+ rules from CFG with SA



Backus-Naur Form  (The same thing…)

BNF (Backus-Naur Form) grammars
– Originally used to define programming 

languages
– Variables denoted by long names in angle 

brackets, e.g.
<identifier>, <if-then-else-statement>,                
<assignment-statement>, <condition>

∷= used instead of  →



BNF for C



BNF for (Simple) English

Back to middle school:
<sentence>∷=<noun phrase><verb phrase>
<noun phrase>∷==<article><adjective><noun>
<verb phrase>∷=<verb><adverb>|<verb><object>
<object>∷=<noun phrase>

Parse:   
The yellow duck squeaked loudly
The red truck hit a parked car



So far: Languages — REs and CFGs

Two new ways of defining languages
• Regular Expressions (0 ∪ 1)* 0110 (0 ∪ 1)*

– easy to understand (declarative)

• Context-free Grammars S → SS | 0S1 | 1S0 | ε
– more expressive
– (a way of recursively-defining sets)

We will connect these to machines shortly.
But first, we need some new math terminology….



Relations and Directed Graphs



Relations

Let A and B be sets,  
A binary relation from A to B is a subset of A × B

Let A be a set,
A binary relation on A is a subset of A × A



Relations You Already Know

≥ on ℕ
That is, {(x,y) : x ≥ y and x, y ∈ ℕ}

< on ℝ
That is, {(x,y) : x < y and x, y ∈ ℝ}

= on ∑*
That is, {(x,y) : x = y and x, y ∈ ∑*}

⊆ on $(U) for universe U
That is, {(A,B) : A ⊆ B and A, B ∈ $(U)}



More Relation Examples

R1 = {(a, 1),  (a, 2), (b, 1), (b, 3), (c, 3)}

R2 = {(x, y) : x ≡ y (mod 5) }

R3 = {(c1, c2) : c1 is a prerequisite of c2 }

R4 = {(s, c) : student s has taken course c }



Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b,a) ∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

R is transitive iff (a,b)∈ R and (b,c)∈ R implies (a,c) ∈ R



Which relations have which properties?

≥ on ℕ :  
< on ℝ :  
= on ∑* : 
⊆ on $(U): 
R2 = {(x, y) : x ≡ y (mod 5)}: 
R3 = {(c1, c2) : c1 is a prerequisite of c2 }: 

R is reflexive iff (a,a) ∈ R for every a ∈ A
R is symmetric iff (a,b) ∈ R implies (b, a)∈ R
R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R
R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R



Which relations have which properties?

≥ on ℕ :  Reflexive, Antisymmetric, Transitive
< on ℝ :  Antisymmetric, Transitive
= on ∑* : Reflexive, Symmetric, Antisymmetric, Transitive

⊆ on $(U): Reflexive, Antisymmetric, Transitive
R2 = {(x, y) : x ≡ y (mod 5)}: Reflexive, Symmetric, Transitive
R3 = {(c1, c2) : c1 is a prerequisite of c2 }: Antisymmetric

R is reflexive iff (a,a) ∈ R for every a ∈ A
R is symmetric iff (a,b) ∈ R implies (b, a)∈ R
R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R
R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R


