CSE 311: Foundations of Computing

Lecture 20: CFGs, Relations

Last class: Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- Alphabet Σ of terminal symbols that can't be replaced
- A finite set V of variables that can be replaced
- One variable, usually S, is called the start symbol
- The substitution rules involving a variable \mathbf{A}, written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals

- that is $\mathrm{w}_{\mathrm{i}} \in(\mathbf{V} \cup \Sigma)^{*}$

Last class: How CFGs generate strings

- Begin with "S"
- If there is some variable \mathbf{A} in the current string, you can replace it by one of the w's in the rules for A
- $A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner after a finite number of steps

Last class: Examples

Grammar	Language
$\mathbf{S} \rightarrow 0 \mathbf{S}\|\mathbf{S} 1\| \varepsilon$	$0 * \mathbf{1}^{*}$
$\mathbf{S} \rightarrow 0 \mathbf{S} 0\|1 \mathbf{S} 1\| 0\|1\| \varepsilon$	The set of all binary palindromes
$\mathbf{S} \rightarrow 0 \mathbf{S} 1 \mid \varepsilon$	$\left\{\mathbf{0}^{n} \mathbf{1}^{n}: \boldsymbol{n} \geq \mathbf{0}\right\}$
$\mathbf{S} \rightarrow 0 \mathbf{S} 11 \mid \varepsilon$	$\left\{\mathbf{0}^{n} \mathbf{1}^{2 n}: \boldsymbol{n} \geq \mathbf{0}\right\}$
$\mathbf{S} \rightarrow \mathrm{A} 10$	
$\mathbf{A} \rightarrow 0 \mathbf{A} 1 \mid \varepsilon$	$\left\{\mathbf{0}^{\boldsymbol{n}} \mathbf{1}^{n+1} \mathbf{0}: \boldsymbol{n} \geq \mathbf{0}\right\}$
$\mathbf{S} \rightarrow \mathbf{(S)}\|\mathbf{S S}\| \varepsilon$	The set of all strings of matched parentheses

Example Context-Free Grammars

Binary strings with equal numbers of 0 s and 1 s (not just 0n1", also 0101, 0110, etc.)

Example Context-Free Grammars

Binary strings with equal numbers of 0 s and 1s (not just 0n1², also 0101, 0110, etc.)

$\mathbf{S} \rightarrow \mathbf{S S} \mid$ OS1 \| 1S0 \| ε

A standard structural induction can show that everything generated by S has an equal \# of 0 s and 1s

Intuitively, why does this generate all such strings?

Example Context-Free Grammars

Let $x \in\{0,1\}^{*}$. Define $f_{x}(k)$ to be the \# of Os minus \# of 1 s in the first k characters of x.

$$
\text { E.g., for } x=011100
$$

$f_{x}(k)=0$ when first k characters have \#0s = \#1s

- starts out at 0

$$
\text { - ends at } 0
$$

$$
\begin{aligned}
& f_{x}(0)=0 \\
& f_{x}(n)=0
\end{aligned}
$$

Example Context-Free Grammars

Three possibilities for $f_{x}(k)$ for $k \in\{1, \ldots, n-1\}$

- $f_{x}(k)>0$ for all such k
 $\mathrm{S} \rightarrow$ OS1
- $f_{x}(k)<0$ for all such k
$S \rightarrow$ 1S0
- $f_{x}(k)=0$ for some such k

$$
\mathbf{S} \rightarrow \mathbf{S S}
$$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
- The symbols of x label the leaves ordered left-to-right
$\mathbf{S} \rightarrow$ OSO \mid 1S1 $|0| 1 \mid \varepsilon$

Parse tree of 01110

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two ways that give two different parse trees

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in ways that give two different parse trees

$E \Rightarrow E+E \Rightarrow x+E \Rightarrow x+E * E \Rightarrow x+y * E \Rightarrow x+y * z$
(add x to the product of y and z)

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term F-factor I-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

No longer allows:

CFGs and recursively-defined sets of strings

- A CFG with the start symbol \mathbf{S} as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- sometimes necessary to use more than one

CFGs and regular expressions

Theorem: For all regular expressions A there is a CFG that generates precisely the strings A matches

Proof: Structural Induction

```
Basis:
\(-\varepsilon\) is a regular expression
- \(\boldsymbol{a}\) is a regular expression for any \(\mathbf{a} \in \Sigma\)
- Recursive step:
- If \(A\) and \(B\) are regular expressions then so are:
\(A \cup B\)
AB
A*
```


CFGs can do everything REs can

- CFG to match RE ε
$\mathbf{S} \rightarrow \boldsymbol{\varepsilon}$
- CFG to match RE a (for any $a \in \Sigma$)
$\mathbf{S} \rightarrow \mathrm{a}$

```
Basis:
\(-\varepsilon\) is a regular expression
- \(\boldsymbol{a}\) is a regular expression for any \(\boldsymbol{a} \in \Sigma\)
- Recursive step:
- If \(\mathbf{A}\) and \(\mathbf{B}\) are regular expressions then so are:
\(A \cup B\)
AB
A*
```


CFGs can do everything REs can

Suppose CFG with start symbol \mathbf{S}_{A} matches RE A CFG with start symbol \mathbf{S}_{B} matches RE B
(Then rename variables so no vars used in both)

- CFG to match REA $\cup B$

Add $\mathbf{S} \rightarrow \mathbf{S}_{\mathbf{A}} \mid \mathbf{S}_{\mathbf{B}}$

+ rules from both CFGs
- CFG to match RE AB

Add $\mathbf{S} \rightarrow \mathbf{S}_{\mathrm{A}} \mathbf{S}_{\mathrm{B}}$

+ rules from both CFGs
- Basis:
$-\varepsilon$ is a regular expression
$-\boldsymbol{a}$ is a regular expression for any $\boldsymbol{a} \in \Sigma$
- Recursive step:
- If A and B are regular expressions then so are:
$A \cup B$
AB
A*

CFGs can do everything that REs can

- CFG to match RE A^{*}

Add $\mathbf{S} \rightarrow \mathbf{S}_{\mathbf{A}} \mathbf{S} \mid \varepsilon$

+ rules from CFG with $\mathbf{S}_{\mathbf{A}}$

```
Basis:
\(-\varepsilon\) is a regular expression
- \(\boldsymbol{a}\) is a regular expression for any \(\boldsymbol{a} \in \Sigma\)
- Recursive step:
- If \(A\) and \(B\) are regular expressions then so are:
\(A \cup B\)
AB
A*
```


Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>, <assignment-statement>, <condition>
$::=$ used instead of \rightarrow

BNF for C

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
        block |
        "if" "(" expression ")" statement |
        "if" "(" expression ")" statement "else" statement |
        "switch" "(" expression ")" statement |
        "while" "(" expression ")" statement |
        "do" statement "while" "(" expression ")" ";" |
        "for" "(" expression? ";" expression? ";" expression? ")" statement |
        "goto" identifier ";" |
        "continue" ";" |
        "break" ";" |
        "return" expression? ";"
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression: (
            unary-expression (
            "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
            "^=" | "|="
        )
    )* conditional-expression
conditional-expression:
    logical-OR-expression ( "?" expression ":" conditional-expression )?
```


BNF for (Simple) English

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

So far: Languages - REs and CFGs

Two new ways of defining languages

- Regular Expressions $\quad(0 \cup 1)^{*} 0110(0 \cup 1)$ *
- easy to understand (declarative)
- Context-free Grammars
$\mathrm{S} \rightarrow \mathrm{SS} \mid$ OS1 | 1S0 \| ε
- more expressive
- (a way of recursively-defining sets)

We will connect these to machines shortly.
But first, we need some new math terminology....

Relations and Directed Graphs

And now
 for something completely different...

Relations

Let A and B be sets, A binary relation from A to B is a subset of $A \times B$

Let A be a set, A binary relation on A is a subset of $A \times A$

Relations You Already Know

\geq on \mathbb{N}
That is, $\{(x, y): x \geq y$ and $x, y \in \mathbb{N}\}$
$<$ on \mathbb{R}
That is, $\{(x, y): x<y$ and $x, y \in \mathbb{R}\}$
$=$ on Σ^{*}
That is, $\left\{(x, y): x=y\right.$ and $\left.x, y \in \sum^{*}\right\}$
\subseteq on $\mathcal{P}(U)$ for universe U
That is, $\{(A, B): A \subseteq B$ and $A, B \in \mathcal{P}(U)\}$

More Relation Examples

$$
\begin{aligned}
& \mathbf{R}_{1}=\{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\} \\
& \mathbf{R}_{2}=\{(x, y): x \equiv y(\bmod 5)\}
\end{aligned}
$$

$$
R_{3}=\left\{\left(c_{1}, c_{2}\right): c_{1} \text { is a prerequisite of } c_{2}\right\}
$$

$$
R_{4}=\{(s, c): \text { student } s \text { has taken course } c\}
$$

Properties of Relations

Let R be a relation on A.
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

\geq on \mathbb{N} :
$<$ on \mathbb{R} :
$=$ on \sum^{*} :
\subseteq on $\mathcal{P}(\mathrm{U})$:
$\mathbf{R}_{\mathbf{2}}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \equiv \mathrm{y}(\bmod 5)\}:$
$\mathbf{R}_{3}=\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right): \mathrm{c}_{1}\right.$ is a prerequisite of $\left.\mathrm{c}_{2}\right\}$:
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$ R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

\geq on \mathbb{N} : Reflexive, Antisymmetric, Transitive
< on \mathbb{R} : Antisymmetric, Transitive
$=$ on Σ^{*} : Reflexive, Symmetric, Antisymmetric, Transitive
\subseteq on $\mathcal{P}(\mathrm{U}):$ Reflexive, Antisymmetric, Transitive
$\mathbf{R}_{\mathbf{2}}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \equiv \mathrm{y}(\bmod 5)\}$: Reflexive, Symmetric, Transitive
$\mathbf{R}_{3}=\left\{\left(c_{1}, c_{2}\right): c_{1}\right.$ is a prerequisite of $\left.c_{2}\right\}$: Antisymmetric
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$ R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

