CSE 311: Foundations of Computing

Lecture 20: CFGs, Relations

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 - Alphabet Σ of *terminal symbols* that can't be replaced
 - A finite set V of variables that can be replaced
 - One variable, usually **S**, is called the *start symbol*
- The substitution rules involving a variable **A**, written as $\begin{array}{c|c} \mathbf{A} \to \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_k \\ \text{where each } \mathbf{w}_i \text{ is a string of variables and terminals} \end{array}$

- that is $w_i \in (\mathbf{V} \cup \Sigma)^*$

Last class: How CFGs generate strings

- Begin with "S"
- If there is some variable A in the current string, you can replace it by one of the w's in the rules for A
 - $\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$
 - Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be *generated* in this manner after a finite number of steps

Grammar	Language
$S \rightarrow 0S \mid S1 \mid \epsilon$	0*1*
$\mathbf{S} \rightarrow 0\mathbf{S}0 \mid 1\mathbf{S}1 \mid 0 \mid 1 \mid \mathbf{\varepsilon}$	The set of all binary palindromes
$S \rightarrow 0S1 \mid \epsilon$	$\{0^{n}1^{n}:n\geq0\}$
$S \rightarrow 0S11 \mid \epsilon$	$\left\{0^{n}1^{2n}:n\geq0 ight\}$
$S \rightarrow A10$	$\left\{0^{n}1^{n+1}0:n\geq0 ight\}$
$A \rightarrow 0A1 \mid \epsilon$	
$S \rightarrow (S) SS \varepsilon$	The set of all strings of matched parentheses

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

Binary strings with equal numbers of Os and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

$\textbf{S} \rightarrow \textbf{SS}$ | 0S1 | 1S0 | ϵ

A standard structural induction can show that everything generated by S has an equal # of Os and 1s

Intuitively, why does this generate all such strings?

Let $x \in \{0,1\}^*$. Define $f_x(k)$ to be the # of 0s minus # of 1s in the first k characters of x.

 $f_x(k) = 0$ when first k characters have #0s = #1s - starts out at 0 $f_x(0) = 0$ - ends at 0 $f_x(n) = 0$ Three possibilities for $f_x(k)$ for $k \in \{1, ..., n-1\}$

- $f_x(k) > 0$ for all such k $S \rightarrow 0S1$
- $f_x(k) < 0$ for all such k

 $\textbf{S} \rightarrow \textbf{1S0}$

• $f_x(k) = 0$ for some such k

 $S \rightarrow SS$

$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$ $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate (2*x) + y

$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$ $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate (2*x) + y

 $\mathsf{E} \Rightarrow \mathsf{E} + \mathsf{E} \Rightarrow (\mathsf{E}) + \mathsf{E} \Rightarrow (\mathsf{E} * \mathsf{E}) + \mathsf{E} \Rightarrow (\mathbf{2} * \mathsf{E}) + \mathsf{E} \Rightarrow (\mathbf{2} * x) + \mathsf{E} \Rightarrow (\mathbf{2} * x) + \mathsf{y}$

Suppose that grammar G generates a string x

- A parse tree of **x** for **G** has
 - Root labeled S (start symbol of G)
 - The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
 - The symbols of x label the leaves ordered left-to-right

 $\textbf{S} \rightarrow \textbf{OSO} ~|~ \textbf{1S1} ~|~ \textbf{0} ~|~ \textbf{1} ~|~ \textbf{\epsilon}$

Parse tree of 01110

$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$ $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate x+y*z in two ways that give two *different* parse trees

$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$ $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate x+y*z in ways that give two *different* parse trees

building precedence in simple arithmetic expressions

- **E** expression (start symbol)
- \mathbf{T} term \mathbf{F} factor \mathbf{I} identifier \mathbf{N} number
 - $E \rightarrow T \mid E+T$
 - $T \rightarrow F \mid F * T$
 - $F \rightarrow (E) \mid I \mid N$
 - $I \longrightarrow x \mid y \mid z$
 - $N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

building precedence in simple arithmetic expressions

- **E** expression (start symbol)
- \mathbf{T} term \mathbf{F} factor \mathbf{I} identifier \mathbf{N} number

 - $F \rightarrow (E) | I | N$
 - $I \rightarrow x \mid y \mid z$
 - $N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

CFGs and recursively-defined sets of strings

- A CFG with the start symbol S as its *only* variable recursively defines the set of strings of terminals that S can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by *each* of its variables
 - sometimes necessary to use more than one

Theorem: For all regular expressions A there is a CFG that generates precisely the strings A matches

Proof: Structural Induction

- Basis:
 - $-\epsilon$ is a regular expression
 - **a** is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:
 - $\mathbf{A} \cup \mathbf{B}$
 - AB
 - **A***

CFGs can do everything REs can

• CFG to match RE **E**

 $\boldsymbol{S} \to \boldsymbol{\epsilon}$

• CFG to match RE **a** (for any $a \in \Sigma$)

 $\mathbf{S} \rightarrow \mathbf{a}$

- Basis:
 - $-\epsilon$ is a regular expression
 - **a** is a regular expression for any $\mathbf{a} \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:
 - $\mathbf{A} \cup \mathbf{B}$
 - AB
 - **A***

Suppose CFG with start symbol S_A matches RE A CFG with start symbol S_B matches RE B (Then rename variables so no vars used in both)

- CFG to match RE $A \cup B$ Add $S \rightarrow S_A | S_B$ + rules from both CFGs
- CFG to match RE AB

Add $\mathbf{S} \rightarrow \mathbf{S}_{A} \mathbf{S}_{B}$ + rules from both CFGs • Basis:

- $-\epsilon$ is a regular expression
- **a** is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:
 - $\mathbf{A} \cup \mathbf{B}$
 - AΒ Δ*

CFGs can do everything that REs can

• CFG to match RE A^* Add $S \rightarrow S_A S \mid \varepsilon$ + rules from CFG with S_A

- Basis:
 - $-\epsilon$ is a regular expression
 - **a** is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:
 - $\mathbf{A} \cup \mathbf{B}$
 - AB
 - **A***

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.

<identifier>, <if-then-else-statement>,

<assignment-statement>, <condition>

 $::=\,$ used instead of $\,\rightarrow\,$

BNF for C

```
statement:
  ((identifier | "case" constant-expression | "default") ":")*
  (expression? ";" |
  block |
   "if" "(" expression ")" statement |
   "if" "(" expression ")" statement "else" statement |
   "switch" "(" expression ")" statement |
   "while" "(" expression ")" statement |
   "do" statement "while" "(" expression ")" ";" |
   "for" "(" expression? ";" expression? ";" expression? ")" statement |
   "goto" identifier ";" |
   "continue" ";" |
   "break" ";" |
   "return" expression? ";"
  )
block: "{" declaration* statement* "}"
expression:
  assignment-expression%
assignment-expression: (
    unarv-expression (
      "=" | "*=" | "/=" | "&=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
      "^=" | "|="
  )* conditional-expression
conditional-expression:
  logical-OR-expression ( "?" expression ":" conditional-expression )?
```

Back to middle school:

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::==<article><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly The red truck hit a parked car Two new ways of defining languages

- Regular Expressions $(0 \cup 1)^* 0110 (0 \cup 1)^*$
 - easy to understand (declarative)
- Context-free Grammars $S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$
 - more expressive
 - (a way of recursively-defining sets)

We will connect these to machines shortly. But first, we need some new math terminology....

Relations and Directed Graphs

Let A and B be sets, A **binary relation from** A **to** B is a subset of $A \times B$

Let A be a set,

A binary relation on A is a subset of $A \times A$

 \geq on \mathbb{N}

That is, $\{(x,y) : x \ge y \text{ and } x, y \in \mathbb{N}\}$

< on $\mathbb R$

That is, $\{(x,y) : x < y \text{ and } x, y \in \mathbb{R}\}$

= on Σ^* That is, {(x,y) : x = y and x, y $\in \Sigma^*$ }

\subseteq on $\mathcal{P}(U)$ for universe U That is, {(A,B) : A \subseteq B and A, B $\in \mathcal{P}(U)$ }

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$R_2 = \{(x, y) : x \equiv y \pmod{5} \}$$

$$R_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}$$

Let R be a relation on A.

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b,a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

Which relations have which properties?

- \geq on \mathbb{N} :
- < on \mathbb{R} :
- = on Σ^* :

 \subseteq on $\mathcal{P}(\mathsf{U})$:

$$R_2 = \{(x, y) : x \equiv y \pmod{5}\}$$
:

 $\mathbf{R}_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}:$

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$ R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$ R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$ R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

- \geq on \mathbb{N} : Reflexive, Antisymmetric, Transitive
- < on \mathbb{R} : Antisymmetric, Transitive
- = on Σ^* : Reflexive, Symmetric, Antisymmetric, Transitive
- \subseteq on $\mathcal{P}(U)$: Reflexive, Antisymmetric, Transitive
- $R_2 = \{(x, y) : x \equiv y \pmod{5}\}$: Reflexive, Symmetric, Transitive
- $\mathbf{R}_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}$: Antisymmetric

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$ R is **symmetric** iff $(a,b) \in R$ implies $(b,a) \in R$ R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$ R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$