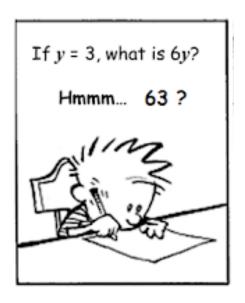
CSE 311: Foundations of Computing

Lecture 20: CFGs, Relations



Last class: Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 - Alphabet ∑ of terminal symbols that can't be replaced
 - A finite set V of variables that can be replaced
 - One variable, usually S, is called the start symbol
- The substitution rules involving a variable A, written as

$$\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$$

where each w_i is a string of variables and terminals

- that is $w_i \in (V \cup \Sigma)^*$

Last class: How CFGs generate strings

- Begin with "S"
- If there is some variable A in the current string,
 you can replace it by one of the w's in the rules for A
 - $A \rightarrow W_1 \mid W_2 \mid \cdots \mid W_k$
 - Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner after a finite number of steps

Last class: Examples

Grammar	Language
$S \rightarrow 0S \mid S1 \mid \epsilon$	0*1*
$S \rightarrow 0S0 1S1 0 1 \epsilon$	The set of all binary palindromes
$S \rightarrow 0S1 \mid \epsilon$	$\{0^n1^n: n \geq 0\}$
$S \rightarrow 0S11 \mid \epsilon$	$\left\{0^n1^{2n}: n \geq 0\right\}$
$S \rightarrow A10$	$\left\{0^n1^{n+1}0: n \geq 0\right\}$
$A \rightarrow 0A1 \mid \epsilon$	
$S \rightarrow (S) \mid SS \mid \varepsilon$	The set of all strings of matched parentheses

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

$$S \rightarrow 2 | S10|S01| ols |105| 150$$

 $S \rightarrow 0S1$

Binary strings with equal numbers of 0s and 1s (not just 0°1°, also 0101, 0110, etc.)

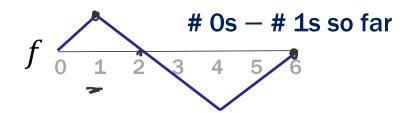
$$S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$$

A standard structural induction can show that everything generated by S has an equal # of 0s and 1s

Intuitively, why does this generate all such strings?

Let $x \in \{0,1\}^*$. Define $f_x(k)$ to be the # of 0s minus # of 1s in the first k characters of x.

E.g., for
$$x = 0.11100$$



 $f_x(k) = 0$ when first k characters have #0s = #1s

- starts out at 0 $f_x(0) = 0$
- ends at 0 $f_{\chi}(n) = 0$

Three possibilities for $f_x(k)$ for $k \in \{1, ..., n-1\}$

• $f_{\chi}(k) > 0$ for all such k

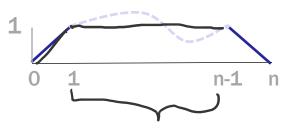
$$S \rightarrow 0S1$$

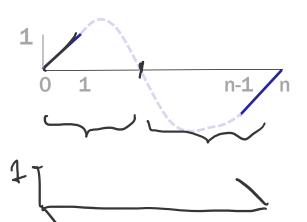
• $f_x(k) < 0$ for all such k

$$S \rightarrow 1S0$$

• $f_x(k) = 0$ for some such k

$$S \rightarrow SS$$





Simple Arithmetic Expressions

$$E \rightarrow E + E \mid E \times E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$$

 $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate (2*x) + y

Simple Arithmetic Expressions

$$E \rightarrow E + E \mid E \times E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$$

 $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

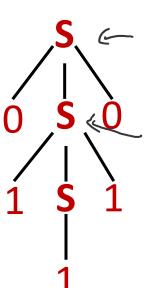
Generate (2*x) + y

$$E \Rightarrow E+E \Rightarrow (E)+E \Rightarrow (E*E)+E \Rightarrow (2*E)+E \Rightarrow (2*x)+E \Rightarrow (2*x)+y$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
 - Root labeled S (start symbol of G)
 - The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
 - The symbols of x label the leaves ordered left-to-right

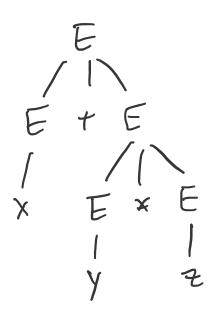


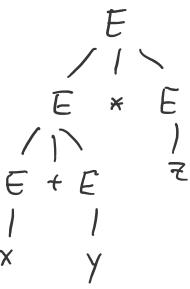
Simple Arithmetic Expressions

$$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$$

 $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate x+y*z in two ways that give two *different* parse trees



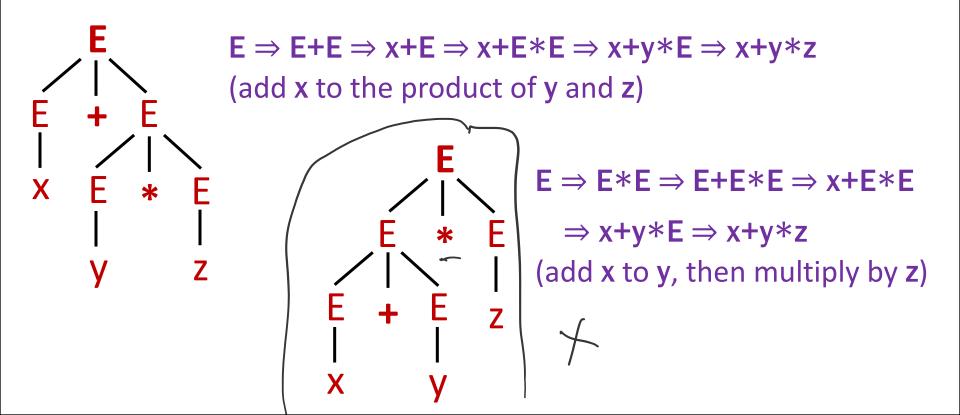


Simple Arithmetic Expressions

$$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$$

 $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate x+y*z in ways that give two *different* parse trees

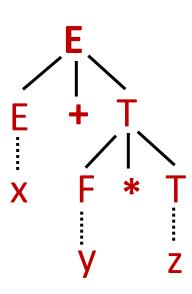


building precedence in simple arithmetic expressions

- E expression (start symbol)
- T term F factor I identifier N number

$$I \rightarrow x \mid y \mid z$$

$$N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$



building precedence in simple arithmetic expressions

- E expression (start symbol)
- T term F factor I identifier N number

CFGs and recursively-defined sets of strings

 A CFG with the start symbol S as its only variable recursively defines the set of strings of terminals that S can generate

- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
 - sometimes necessary to use more than one

CFGs and regular expressions

Theorem: For all regular expressions A there is a CFG that generates precisely the strings A matches

Proof: Structural Induction

- Basis:
 - ε is a regular expression
 - **–** \boldsymbol{a} is a regular expression for any \boldsymbol{a} ∈ Σ
- Recursive step:
 - If A and B are regular expressions then so are:

 $A \cup B$

ΑE

A'

CFGs can do everything REs can

CFG to match RE

$$S \rightarrow \epsilon$$

• CFG to match RE a (for any $a \in \Sigma$)

$$\mathbf{S} \rightarrow \mathbf{a}$$

- · Basis:
 - ε is a regular expression
 - ${\it a}$ is a regular expression for any ${\it a} \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:

 $A \cup I$

ΑE

А*

CFGs can do everything REs can

Suppose CFG with start symbol **S**_A matches RE **A**CFG with start symbol **S**_B matches RE **B**(Then rename variables so no vars used in both)

CFG to match RE A ∪ B

Add
$$S \rightarrow S_A \mid S_B$$

+ rules from both CFGs

CFG to match RE AB

Add
$$S \rightarrow S_A S_B$$

+ rules from both CFGs

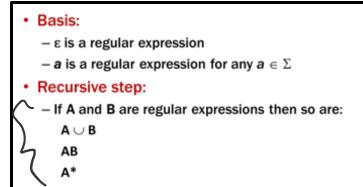
- Basis:
 - ε is a regular expression
 - -a is a regular expression for any a ∈ Σ
- Recursive step:
 - If A and B are regular expressions then so are:

CFGs can do everything that REs can

CFG to match RE A*

Add
$$S \rightarrow S_A S \mid \varepsilon$$

+ rules from CFG with S_A



Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.

```
<identifier>, <if-then-else-statement>,
```

<assignment-statement>, <condition>

```
::= used instead of \rightarrow
```

BNF for C

```
statement:
  ((identifier | "case" constant-expression | "default") ":") *
  (expression? ";" |
  block |
   "if" "(" expression ")" statement |
   "if" "(" expression ")" statement "else" statement |
   "switch" "(" expression ")" statement |
   "while" "(" expression ")" statement |
   "do" statement "while" "(" expression ")" ";" |
   "for" "(" expression? ";" expression? ";" expression? ")" statement |
   "goto" identifier ";" |
   "continue" ";" |
   "break" ";" |
   "return" expression? ";"
block: "{" declaration* statement* "}"
expression:
  assignment-expression%
assignment-expression: (
    unary-expression (
      "=" | "*=" | "/=" | "$=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
      "^=" | "|="
  ) * conditional-expression
conditional-expression:
  logical-OR-expression ( "?" expression ":" conditional-expression )?
```

BNF for (Simple) English

Back to middle school:

```
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
```

Parse:

The yellow duck squeaked loudly

The red truck hit a parked car

So far: Languages — REs and CFGs

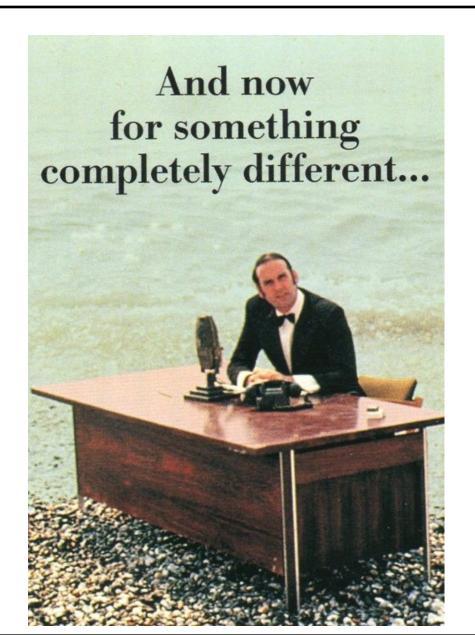
Two new ways of defining languages

- Regular Expressions $(0 \cup 1)* 0110 (0 \cup 1)*$
 - easy to understand (declarative)
- Context-free Grammars $S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$
 - more expressive
 - (a way of recursively-defining sets)

We will connect these to machines shortly.

But first, we need some new math terminology....

Relations and Directed Graphs



Relations

Let A and B be sets,

A binary relation from A to B is a subset of $A \times B$

Let A be a set,

A binary relation on A is a subset of $A \times A$

Relations You Already Know

```
\geq on \mathbb{N}
    That is, \{(x,y): x \geq y \text{ and } x, y \in \mathbb{N}\}
< on \mathbb R
    That is, \{(x,y): x < y \text{ and } x, y \in \mathbb{R}\}
= on \Sigma^*
    That is, \{(x,y): x = y \text{ and } x, y \in \Sigma^*\}
\subseteq on \mathcal{P}(\mathsf{U}) for universe \mathsf{U}
    That is, \{(A,B): A \subseteq B \text{ and } A, B \in \mathcal{P}(U)\}
```

More Relation Examples

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$R_2 = \{(x, y) : x \equiv y \pmod{5} \}$$

$$\mathbf{R_3} = \{(\mathbf{c_1}, \mathbf{c_2}) : \mathbf{c_1} \text{ is a prerequisite of } \mathbf{c_2} \}$$

$$\mathbf{R}_4 = \{(s, c) : \text{student s has taken course c }\}$$

Properties of Relations

Let R be a relation on A.

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b,a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

Which relations have which properties?

```
\geq on \mathbb{N}: \mathbb{R}^{n} \longrightarrow \mathbb{N}: \mathbb{N
```

```
R is reflexive iff (a,a) \in R for every a \in A
R is symmetric iff (a,b) \in R implies (b,a) \in R
R is antisymmetric iff (a,b) \in R and a \neq b implies (b,a) \notin R
R is transitive iff (a,b) \in R and (b,c) \in R implies (a,c) \in R
```

Which relations have which properties?

```
\geq on \mathbb{N}: Reflexive, Antisymmetric, Transitive < on \mathbb{R}: Antisymmetric, Transitive = on \Sigma^*: Reflexive, Symmetric, Antisymmetric, Transitive \subseteq on \mathcal{P}(U): Reflexive, Antisymmetric, Transitive R_2 = \{(x, y) : x \equiv y \pmod{5}\}: Reflexive, Symmetric, Transitive R_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}: Antisymmetric
```

```
R is reflexive iff (a,a) \in R for every a \in A
R is symmetric iff (a,b) \in R implies (b,a) \in R
R is antisymmetric iff (a,b) \in R and a \neq b implies (b,a) \notin R
R is transitive iff (a,b) \in R and (b,c) \in R implies (a,c) \in R
```