CSE 311: Foundations of Computing

Lecture 20: CFGs, Relations

Last class: Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- Alphabet Σ of terminal symbols that can't be replaced
- A finite set V of variables that can be replaced
- One variable, usually S, is called the start symbol
- The substitution rules involving a variable \mathbf{A}, written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals

- that is $w_{i} \in(\mathbf{V} \cup \boldsymbol{\Sigma})^{*}$

Last class: How CFGs generate strings

- Begin with "S"
- If there is some variable \mathbf{A} in the current string, you can replace it by one of the w's in the rules for A
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner after a finite number of steps

Last class: Examples

Grammar	Language	
$\mathbf{S} \rightarrow \mathbf{O S} \mid \mathbf{S 1} \\| \varepsilon$	0*1*	
$\mathbf{S \rightarrow 0 S 0 \| 1 S 1 \| 0 \| 1 \| \varepsilon ~}$	The set of all binary palindromes	
$\mathbf{S \rightarrow O S 1 \| \varepsilon}$	$\left\{0^{n} 1^{n}: n \geq 0\right\}$	
$\mathbf{S} \rightarrow$ OS11 \\| ε	$\left\{0^{n} 1^{2 n}: n \geq 0\right\}$	
$\begin{array}{\|l\|} \hline \mathbf{S} \rightarrow \mathrm{A} 10 \\ \mathbf{A} \rightarrow 0 \mathrm{~A} 1 \mid \varepsilon \\ \hline \end{array}$	$\left\{0^{n} 1^{n+1} 0: n \geq 0\right\}$	
$\mathbf{S \rightarrow} \mathbf{(S)}\|\mathbf{S S}\| \varepsilon$	The set of all strings of matched parentheses	

Example Context-Free Grammars

Binary strings with equal numbers of Os and is (not just $0^{n 1} 1^{n}$, also 0101, 0110, etc.)

```
S->\varepsilon|S10|S01 | 0ls|10S| 150
S->OS1
```


Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just $0{ }^{n} 1^{n}$, also 0101, 0110, etc.)
0110
$\mathbf{S} \rightarrow \mathbf{S S} \mid$ OS1 | $1 \mathbf{S O} \| \varepsilon$

A standard structural induction can show that everything generated by S has an equal \# of 0 s and 1s

Intuitively, why does this generate all such strings?

Example Context-Free Grammars

Let $x \in\{0,1\}^{*}$. Define $f_{x}(k)$ to be the \# of Os minus \# of 1 s in the first k characters of x.

$$
\text { E.g., for } x=011100
$$

$f_{x}(k)=0$ when first k characters have \#0s = \#1s

- starts out at 0

$$
\begin{aligned}
& f_{x}(0)=0 \\
& f_{x}(n)=0
\end{aligned}
$$

- ends at 0

Example Context-Free Grammars

Three possibilities for $f_{x}(k)$ for $k \in\{1, \ldots, n-1\}$

- $f_{x}(k)>0$ for all such k
$\mathbf{S} \rightarrow$ 0S1

- $f_{x}(k)<0$ for all such k
$S \rightarrow$ 1S0
- $f_{x}(k)=0$ for some such k
$\mathbf{S} \rightarrow \mathbf{S S}$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
E \Rightarrow E+E \Rightarrow(E)+E \Rightarrow(E * E)+E \Rightarrow
$$

Simple Arithmetic Expressions

$E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4$ |5|6|7|8|9

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
- The symbols of x label the leaves ordered left-to-right
$S \Rightarrow 0 S 0 \Rightarrow 01510 \Rightarrow 01110$
$\mathbf{S} \rightarrow \mathbf{0 S O}|\mathbf{1 S} 1| 0|1| \varepsilon$

Parse tree of 01110

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow \text { E+E|E*E|(E)|x|y|z|0|1|2|3|4} \\
\text { |5|6|7|8|9 }
\end{gathered}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two ways that give two different parse trees

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow \text { E+E|E*E|(E)|x|y|z|0|1|2|3|4} \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in ways that give two different parse trees

$E \Rightarrow E+E \Rightarrow x+E \Rightarrow x+E * E \Rightarrow x+y * E \Rightarrow x+y * z$
(add x to the product of y and z)
$E \Rightarrow E * E \Rightarrow E+E * E \Rightarrow x+E * E$
$\Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{z}$
(add x to y, then multiply by z)
building precedence in simple arithmetic expressions

- E-expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N}-number
$\mathbf{E} \rightarrow \underline{\mathbf{T}} \mid \underline{\mathrm{E}+\mathbf{T}}$
$\underline{T} \rightarrow \underline{E} \mid \underline{F * T}$
$\mathrm{F} \rightarrow(\mathrm{E})|\mathrm{I}| \mathrm{N}$
I $\rightarrow x|y| z$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

building precedence in simple arithmetic expressions
- E-expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E + T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F}+\mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

No longer allows:

CFGs and recursively-defined sets of strings

- A CFG with the start symbol \mathbf{S} as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- sometimes necessary to use more than one

CFGs and regular expressions

Theorem: For all regular expressions A there is a CFG that generates precisely the strings A matches

Proof: Structural Induction

```
- Basis:
\(-\varepsilon\) is a regular expression
\(-a\) is a regular expression for any \(a \in \Sigma\)
- Recursive step:
- If \(\mathbf{A}\) and \(\mathbf{B}\) are regular expressions then so are:
\(A \cup B\)
AB
A*
```


CFGs can do everything REs can

- CFG to match RE ε
$\mathbf{S} \rightarrow \varepsilon$
- CFG to match RE a (for any a $\in \Sigma$)
$S \rightarrow a$

```
- Basis:
\(-\varepsilon\) is a regular expression
\(-a\) is a regular expression for any \(a \in \Sigma\)
- Recursive step:
- If \(\mathbf{A}\) and \(\mathbf{B}\) are regular expressions then so are:
\(A \cup B\)
AB
A*
```


CFGs can do everything REs can

Suppose CFG with start symbol \mathbf{S}_{A} matches REA CFG with start symbol $\mathrm{S}_{\mathrm{B}}^{-}$matches RE B
(Then rename variables so no vars used in both)

- CFG to match REA $\cup B$

Add $\mathbf{S} \rightarrow \mathbf{S}_{\mathbf{A}} \mid \mathbf{S}_{\mathbf{B}}$

+ rules from both CFGs
- CFG to match RE AB

Add $\mathbf{S} \rightarrow \mathbf{S}_{\mathrm{A}} \mathbf{S}_{\mathrm{B}}$

+ rules from both CFGs
- Basis:
$-\varepsilon$ is a regular expression
$-a$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
$A \cup B$ -
AB
A* \quad.

CFGs can do everything that REs can

- CFG to match RE A*

Add $\mathbf{S} \rightarrow \underbrace{\mathbf{S}_{\mathbf{A}} \mathbf{S} \mid \varepsilon}$

+ rules from CFG with \mathbf{S}_{A}

```
- Basis:
\(-\varepsilon\) is a regular expression
\(-a\) is a regular expression for any \(a \in \Sigma\)
- Recursive step:
- If \(\mathbf{A}\) and \(\mathbf{B}\) are regular expressions then so are:
\(A \cup B\)
AB

\section*{Backus-Naur Form (The same thing...)}

\section*{BNF (Backus-Naur Form) grammars}
- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
\(::=\) used instead of \(\rightarrow\)

\section*{BNF for C}
```

statement:
((identifier | "case" constant-expression | "default") ":")*
(expression? ";" |
block |
"if" "(" expression ")" statement |
"if" "(" expression ")" statement "else" statement |
"switch" "(" expression ")" statement |
"while" "(" expression ")" statement |
"do" statement "while" "(" expression ")" ";" |
"for" "(" expression? ";" expression? ";" expression? ")" statement |
"goto" identifier ";" |
"continue" ";" |
"break" ";" |
"return" expression? ";"
)
block: "{" declaration* statement* "}"
expression:
assignment-expression%
assignment-expression: (
unary-expression (
"=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "\&=" |
"^=" | "|="
)
)* conditional-expression
conditional-expression:
logical-OR-expression ("?" expression ":" conditional-expression)?

```

\section*{BNF for (Simple) English}

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

\section*{So far: Languages - REs and CFGs}

Two new ways of defining languages
- Regular Expressions
\((0 \cup 1) * 0110(0 \cup 1) *\)
- easy to understand (declarative)
- Context-free Grammars \(\quad \mathbf{S} \rightarrow \mathbf{S S}|0 S 1| 1 \mathbf{S 0 | \varepsilon}\)
- more expressive
- (a way of recursively-defining sets)

We will connect these to machines shortly.
But first, we need some new math terminology....

\section*{Relations and Directed Graphs}

\section*{And now for something completely different...}

\section*{Relations}

Let \(A\) and \(B\) be sets, \(A\) binary relation from \(A\) to \(B\) is a subset of \(A \times B\)

Let A be a set,
\(A\) binary relation on \(A\) is a subset of \(A \times A\)

\section*{Relations You Already Know}
\(\geq\) on \(\mathbb{N}\)
That is, \(\{(x, y): x \geq y\) and \(x, y \in \mathbb{N}\}\)
\(<\) on \(\mathbb{R}\)
That is, \(\{(x, y): x<y\) and \(x, y \in \mathbb{R}\}\)
\(=\) on \(\Sigma^{*}\)
That is, \(\left\{(x, y): x=y\right.\) and \(\left.x, y \in \sum^{*}\right\}\)
\(\subseteq\) on \(\mathcal{P}(\mathrm{U})\) for universe U
That is, \(\{(A, B): A \subseteq B\) and \(A, B \in \mathcal{P}(U)\}\)

\section*{More Relation Examples}
\[
\begin{aligned}
& \mathbf{R}_{1}=\{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\} \\
& \mathbf{R}_{2}=\{(x, y): x \equiv y(\bmod 5)\}
\end{aligned}
\]
\[
R_{3}=\left\{\left(c_{1}, c_{2}\right): c_{1} \text { is a prerequisite of } c_{2}\right\}
\]
\[
\mathbf{R}_{\mathbf{4}}=\{(\mathrm{s}, \mathrm{c}): \text { student } s \text { has taken course } c\}
\]

\section*{Properties of Relations}

Let \(R\) be a relation on \(A\).
\(R\) is reflexive iff \((a, a) \in R\) for every \(a \in A\)
\(R\) is symmetric iff \((a, b) \in R\) implies \((b, a) \in R\)
\(R\) is antisymmetric iff \((a, b) \in R\) and \(a \neq b\) implies \((b, a) \notin R\)
\(R\) is transitive iff \((a, b) \in R\) and \((b, c) \in R\) implies \((a, c) \in R\)

\section*{Which relations have which properties?}
\(\geq\) on \(\mathbb{N}: R\). not \(S\). \(A\)
<on \(\mathbb{R}\) : not \(R\). not 5 .
\(=\) on \(\Sigma^{*}: R . S\)
\(\subseteq\) on \(\mathcal{P}(\mathrm{U}): R\). nots
\(\mathbf{R}_{\mathbf{2}}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \equiv \mathrm{y}(\bmod 5)\}: R . S\)
\(\mathbf{R}_{3}=\left\{\left(c_{1}, c_{2}\right): c_{1}\right.\) is a prerequisite of \(\left.c_{2}\right\}\) : not \(R, \operatorname{not} 5\).
\(R\) is reflexive iff \((a, a) \in R\) for every \(a \in A\)
\(R\) is symmetric iff \((a, b) \in R\) implies \((b, a) \in R\)
\(R\) is antisymmetric iff \((a, b) \in R\) and \(a \neq b\) implies \((b, a) \notin R\) \(R\) is transitive iff \((a, b) \in R\) and \((b, c) \in R\) implies \((a, c) \in R\)

\section*{Which relations have which properties?}
\(\geq\) on \(\mathbb{N}\) : Reflexive, Antisymmetric, Transitive
\(<\) on \(\mathbb{R}\) : Antisymmetric, Transitive
\(=\) on \(\Sigma^{*}\) : Reflexive, Symmetric, Antisymmetric, Transitive
\(\subseteq\) on \(\mathcal{P}(\mathrm{U}):\) Reflexive, Antisymmetric, Transitive
\(\mathbf{R}_{2}=\{(x, y): x \equiv y(\bmod 5)\}\) : Reflexive, Symmetric, Transitive
\(\mathbf{R}_{3}=\left\{\left(c_{1}, c_{2}\right): c_{1}\right.\) is a prerequisite of \(\left.c_{2}\right\}\) : Antisymmetric
\(R\) is reflexive iff \((a, a) \in R\) for every \(a \in A\)
\(R\) is symmetric iff \((a, b) \in R\) implies \((b, a) \in R\)
\(R\) is antisymmetric iff \((a, b) \in R\) and \(a \neq b\) implies \((b, a) \notin R\) \(R\) is transitive iff \((a, b) \in R\) and \((b, c) \in R\) implies \((a, c) \in R\)```

