
CSE 311: Foundations of Computing

Lecture 20:  CFGs, Relations



Last class: Context-Free Grammars

• A	Context-Free	Grammar	(CFG)	is	given	by	a	finite	set	
of	substitution	rules	involving
– Alphabet	S of	terminal	symbols that	can’t	be	replaced
– A	finite	set	V of	variables	that	can	be	replaced
– One	variable,	usually	S,	is	called	the	start	symbol

• The	substitution	rules	involving	a	variable	A,	written	as
A® w1 |		w2 |	⋯ |	wk

where	each	wi is	a	string	of	variables	and	terminals
– that	is	wi ∈ (VÈ S)*



Last class: How CFGs generate strings

• Begin	with	“S”

• If	there	is	some	variable	A in	the	current	string,
you	can	replace	it	by	one	of	the	w’s	in	the	rules	for	A
– A® w1 |		w2 |	⋯ |	wk
–Write	this	as				xAy⇒ xwy
– Repeat	until	no	variables	left

• The	set	of	strings	the	CFG	describes	are	all	strings,	
containing	no	variables,	that	can	be	generated in	this	
manner	after	a	finite	number	of	steps



Last class: Examples

Grammar Language

S	® 0S |	S1	|	e 0*1*

S	® 0S0	|	1S1	|	0	|	1	|	e The set of all binary palindromes

S® 0S1 | e !!"!: $ ≥ !
S® 0S11 | e !!""!: $ ≥ !
S® A10
A® 0A1 | e

!!"!#$!: $ ≥ !
S	® (S)	|	SS |	e The set of all strings of matched 

parentheses



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

S ® SS | 0S1 | 1S0 | e

A standard structural induction can show that everything 

generated by S has an equal # of 0s and 1s

Intuitively, why does this generate all such strings?



Let # ∈ {0,1}∗. Define *" + to be the # of 0s minus # 
of 1s in the first + characters of #.

E.g., for x = 011100

*" + = 0 when first + characters have #0s = #1s
– starts out at 0 *" 0 = 0
– ends at 0 *" - = 0

0     1     2     3     4     5     6

Example Context-Free Grammars

& # 0s − # 1s so far



Three possibilities for *"(+) for + ∈ {1,… , - − 1}
• *" + > 0 for all such +
• *" + < 0 for all such +
• *" + = 0 for some such +

Example Context-Free Grammars

0     1                         n-1 n

S ® 0S1

S ® 1S0

S ® SS

0     1                         n-1 n

0     1                         n-1 n

1

1



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y

E ⇒ E+E ⇒ (E)+E ⇒ (E∗E)+E ⇒ (2∗E)+E ⇒ (2∗x)+E ⇒ (2∗x)+y



Parse Trees 

Suppose that grammar G generates a string x

• A parse tree of x for G has

– Root labeled S (start symbol of G)

– The children of any node labeled A are labeled by 
symbols of w left-to-right  for some rule A® w

– The symbols of x label the leaves ordered left-to-right

S	® 0S0	|	1S1	|	0	|	1	|	e

S

0 0S

S1 1

1
Parse tree of 01110



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in two ways that give two different 
parse trees



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in ways that give two different parse trees

E ⇒ E+E ⇒ x+E ⇒ x+E∗E ⇒ x+y∗E ⇒ x+y∗z

(add	x to	the	product	of	y and	z)

E ⇒ E∗E ⇒ E+E∗E ⇒ x+E∗E⇒ x+y∗E ⇒ x+y∗z

(add	x to	y,	then	multiply	by	z)

E

E

+
x

E*

z
y

E E

E

E +
x

E

*
zy

E E



building precedence in simple arithmetic expressions

• E – expression		(start	symbol)
• T – term			F – factor			I – identifier		N - number

E ® T |	E+T
T	 ® F |	F∗T
F	 ® (E) |	I |	N
I	 ® x	|	y	|	z
N	 ® 0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9

E

T

+

x

T

*
zy

E

F



building precedence in simple arithmetic expressions

• E – expression		(start	symbol)
• T – term			F – factor			I – identifier		N - number

E ® T |	E+T
T	 ® F |	F∗T
F	 ® (E) |	I |	N
I	 ® x	|	y	|	z
N	 ® 0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9

E

F T*
z

T

?

No longer

allows:



CFGs and recursively-defined sets of strings

• A	CFG	with	the	start	symbol	S as	its	only variable	
recursively	defines	the	set	of	strings	of	terminals	
that	S can	generate

• A	CFG	with	more	than	one	variable	is	a	
simultaneous	recursive	definition	of	the	sets	of	
strings	generated	by	each of	its	variables
– sometimes	necessary	to	use	more	than	one



Theorem: For all regular expressions A  there is a 
CFG that generates precisely the strings A matches

CFGs and regular expressions

Proof:  Structural Induction



CFGs can do everything REs can

• CFG	to	match	RE	e

S	® e

• CFG	to	match	RE	a (for	any	a	Î S)

S	® a



CFGs can do everything REs can

Suppose CFG	with	start	symbol	SA matches	RE	A 
CFG	with	start	symbol	SB matches	RE	B
(Then	rename	variables	so	no	vars used	in	both)

• CFG	to	match	RE	A È B
Add	S	® SA |	SB
+	rules	from	both	CFGs

• CFG	to	match	RE	AB
Add		S	® SA	SB
+	rules	from	both	CFGs



CFGs can do everything that REs can

• CFG	to	match	RE	A*
Add S	® SA S	|	e
+	rules	from	CFG	with	SA



Backus-Naur Form  (The same thing…)

BNF (Backus-Naur Form) grammars
– Originally used to define programming 

languages
– Variables denoted by long names in angle 

brackets, e.g.
<identifier>, <if-then-else-statement>,                

<assignment-statement>, <condition>∷= used instead of  ®



BNF for C



BNF for (Simple) English

Back to middle school:
<sentence>∷=<noun phrase><verb phrase>
<noun phrase>∷==<article><adjective><noun>
<verb phrase>∷=<verb><adverb>|<verb><object>
<object>∷=<noun phrase>

Parse:   
The yellow duck squeaked loudly
The red truck hit a parked car



So far: Languages — REs and CFGs

Two new ways of defining languages
• Regular Expressions (0 È 1)* 0110 (0 È 1)*
– easy to understand (declarative)

• Context-free Grammars S ® SS | 0S1 | 1S0 | e
– more expressive

– (a way of recursively-defining sets)

We will connect these to machines shortly.
But first, we need some new math terminology….



Relations and Directed Graphs



Relations

Let	A	and	B	be	sets,		
A	binary	relation	from A	to B	is	a	subset	of	A	´ B

Let	A	be	a	set,
A	binary	relation	on	A	is	a	subset	of	A	´ A



Relations You Already Know

≥ on ℕ
That	is,	{(x,y)	:	x	≥ y	and	x,	y	Î ℕ}< on ℝ
That	is,	{(x,y)	:	x	<	y	and	x,	y	Î ℝ}= on ∑*
That	is,	{(x,y)	:	x	= y	and	x,	y	Î ∑*}⊆ on #(U) for universe U
That	is,	{(A,B)	:	A	⊆ B	and	A,	B	Î:(U)}



More Relation Examples

R1 = {(a,	1),		(a,	2),	(b,	1),	(b,	3),	(c,	3)}

R2 = {(x,	y)	:	x	≡	y	(mod	5)	}

R3 = {(c1,	c2)	:	c1 is	a	prerequisite	of	c2 }

R4 = {(s,	c)	:	student	s	has	taken	course	c	}



Properties of Relations

Let	R	be	a	relation	on	A.

R	is	reflexive iff (a,a)	Î R	for	every	a	Î A

R	is	symmetric iff	(a,b)	Î R	implies	(b,a)	Î R

R	is	antisymmetric iff (a,b)	Î R	and	a	¹ b	implies	(b,a)	∉ R

R	is	transitive iff	(a,b)Î R	and	(b,c)Î R	implies (a,c)	Î R



Which relations have which properties?

≥ on ℕ :  < on ℝ :  = on ∑* : ⊆ on :(U): 
R2 = {(x,	y)	:	x	≡	y	(mod	5)}:	
R3 = {(c1,	c2)	:	c1 is	a	prerequisite	of	c2 }:	

R	is	reflexive iff (a,a)	Î R	for	every	a	Î A
R	is	symmetric iff (a,b)	Î R	implies	(b,	a)Î R
R	is	antisymmetric iff (a,b)	Î R	and	a	¹ b	implies	(b,a)	∉ R
R	is	transitive iff (a,b)Î R	and	(b,	c)Î R	implies (a,	c)	Î R



Which relations have which properties?

≥ on ℕ :  Reflexive, Antisymmetric, Transitive< on ℝ :  Antisymmetric, Transitive= on ∑* : Reflexive, Symmetric, Antisymmetric, Transitive⊆ on :(U): Reflexive, Antisymmetric, Transitive

R2 = {(x,	y)	:	x	≡	y	(mod	5)}:	Reflexive, Symmetric, Transitive

R3 = {(c1,	c2)	:	c1 is	a	prerequisite	of	c2 }:	Antisymmetric

R	is	reflexive iff (a,a)	Î R	for	every	a	Î A
R	is	symmetric iff (a,b)	Î R	implies	(b,	a)Î R
R	is	antisymmetric iff (a,b)	Î R	and	a	¹ b	implies	(b,a)	∉ R
R	is	transitive iff (a,b)Î R	and	(b,	c)Î R	implies (a,	c)	Î R


