CSE 311: Foundations of Computing

Lecture 20: CFGs, Relations

If y = 3, what is 6)?

Hmmm.. 63 ?

(/7

.
!
' )




Last class: Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— Alphabet X of terminal symbols that can’t be replaced
— A finite set V of variables that can be replaced
— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A—>wy | wy || w

where each w; is a string of variables and terminals
—thatisw, € (VU X)’




Last class: How CFGs generate strings

* Begin with “S”

* If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A

— Ao w | wy || wy
— Write this as xAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner after a finite number of steps




Last class: Examples

Grammar Language

S—>0S|S1]¢ O*1*

S—>0S0|1S1| 0| 1| ¢ |The set of all binary palindromes

S—>0S1|¢ {0"1™:n > 0}

S—0S11 | ¢ {0"1°™":n > 0}

S — A10 {0"1"*10:n > 0}

A—>0Al | ¢

S—>(S)|SS|c¢ The set of all strings of matched
parentheses




Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

g > s | Stofsot | ols [1S| 150
S~ oSt




Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.) 01D

S$—>S8S§|0S1]|1S0 | ¢

A standard structural induction can show that everything
generated by S has an equal # of Os and 1s

Intuitively, why does this generate all such strings?




Example Context-Free Grammars

Let x € {0,1}". Define f, (k) to be the # of Os minus #
of 1s in the first k characters of x.

/\ # Os — # 1s so far
f

N

f, (k) = 0 when first k characters have #0s = #1s
—starts out at O £ (0)=0
—ends at O fi(n) =0

E.g., for x=011100




Example Context-Free Grammars

Three possibilities for f, (k) for k € {1,...,n — 1}

* f.(k) > 0forallsuchk / L
S — 0S1 I
* f(k) <0 forallsuchk \ /
S - 1S0
* f.(k) = 0 for some such k /S
S >SS — R/\//
ﬂn[ N




Simple Arithmetic Expressions

E-> E+E|E«E| (E) I x|ylz]|0]|1]2]|3]|4
|56 7]8]9

Generate (2*xx) +vy

E2>E+E=> (E)¥E=> (E~E)+E =2




Simple Arithmetic Expressions

E-> E+E|E«E| (E) I x|ylz]|0]|1]2]|3]|4
|56 7]8]9

Generate (2*xx) +vy

E = E+E = (E)*+E = (EXE)+E = (2*E)+E = (2*X)+E = (2*x)+y




Parse Trees

Suppose that grammar G generates a string x

A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A > w

— The symbols of x label the leaves ordered left-to-right

S «—
/ I\
0 SO

S=050 = 01S10= 01110

S—»>080|1S1|0|1]¢

Parse tree of 01110

1

S

1

\

1




Simple Arithmetic Expressions

E-> E+E|E«E| (E) I x|ylz]|0]|1]2]|3]|4
|56 7]8]9

Generate x+y*z in two ways that give two different
parse trees

= E
/l\ __//\~
e+ ¢ /f'\l:)
[ /\E c+Cc %
X E“’ | /
f - X y




Simple Arithmetic Expressions

E> E+E|E+E| (E) | x|y|z|0|1]2]|3]|4
- 1516171819

Generate x+y*z in ways that give two different parse trees

||5\ E = E+E = x+E = Xx+E*E = x+y*E = xt+y*z
/ (add x to the product of y and z)
E + E
| 1\
X E % E /|\ E = E*E = E+E*E = x+E*E
| | = X+y*E = x+y*z
Y Z /|\“- | (add x to y, then multiply by 2)
E -+ E 7
R
X Y




building precedence in simple arithmetic expressions

 E-—expression (start symbol)

e T—term F-factor |I-identifier N - number

E > T|E+T

T SE|FT

F > (@ |I|N

| > x|y|z E

N >0|1]2]3]4]|5]6]718]9 |\
E + T
/I\
X | T

:y 'z




building precedence in simple arithmetic expressions

 E-—expression (start symbol)

e T—term F-—factor |-identifier N - number
VE _>T | E+T No longer
T > F|F«T allows:
F > (E)|I]|N E
T —>x|y|z

N >0|1]2]|3|4]|5|6]7]8]9




CFGs and recursively-defined sets of strings

A CFG with the start symbol S as its only variable

recursively defines the set of strings of terminals
that S can generate

e A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— sometimes necessary to use more than one




CFGs and regular expressions

Theorem: For all regular expressions A there is a
CFG that generates precisely the strings A matches

Proof: Structural Induction

* Basis:
— g is a regular expression
— a is a regular expression foranya € X
* Recursive step:
- If A and B are regular expressions then so are:
AUB
AB
A*




CFGs can do everything REs can

e CFGto match RE ¢

S—o¢

 CFG to match RE a (for any a € )

S—a

/

* Basis: 4
— g is a regular expression
— ais aregular expression foranya € £
* Recursive step:
-~ If A and B are regular expressions then so are:
AUB
AB
Al‘l




CFGs can do everything REs can

-

Suppose CFG with start symbol S, matches RE A
CFG with start symbol Sz matches RE B

(Then rename variables so no vars used in both)

e CFGtomatchREA U B

AddS — S, | Sg
+ rules from both CFGs B
=

* CFG to match RE AB " Bass

— g is a regular expression
— ais aregular expression foranya € £

Add S —> SA SB * Recursive step:
-~ If A and B are regular expressions then so are:
+ rules from both CFGs AUB -

AB —
A* v




CFGs can do everything that REs can

* CFG to match REA”
AddS —S,S | €
S
+ rules from CFG with S,

* Basis:
— g is a regular expression
— ais aregular expression foranya € £

* Recursive step:

-~ If A and B are regular expressions then so are:
AUB
AB
Al‘l




Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

— Originally used to define programming
languages

— Variables denoted by long names in angle
brackets, e.g.

<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>

::= used instead of —




BNF for C

statement:
((identifier | "case" constant-expression | "default™) ":")*
(expression? ";" |
block |
"if" " (" expression ")" statement |
"if" " (" expression ")" statement "else" statement |
"switch" " (" expression ")" statement |
"while™ " (" expression ")" statement |
"do" statement "while™ " (" expression ")" ";" |
"for™ " (" expression? ";" expression? ";" expression? ")" statement |
"goto" identifier ";" |
"continue™ ";" |
"break™ ";" |

"return" expression? ";"

block: "{" declaration* statement* "}"

expression:
assignment-expression$

assignment-expression: (
unary-expression (
'l='l | n *='l | n /='l I n %='l | 'l+=ll | ll_=|l | |l<<=|l | |l>>=|l | n &='l

nmA_m | ”n |_ll

)

)* conditional-expression

conditional-expression:
logical-OR-expression ( "?2" expression ":" conditional-expression )?




BNF for (Simple) English

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car




So far: Languages — REs and CFGs

Two new ways of defining languages

* Regular Expressions Ou1)*0110 0L 1)*
— easy to understand (declarative)

* Context-free Grammars S->S8S|081]|1S0 | ¢

— more expressive
— (a way of recursively-defining sets)

We will connect these to machines shortly.
But first, we nheed some new math terminology....




Relations and Directed Graphs

And now
for something
completely different...




Relations

Let A and B be sets,
A binary relation from A to B is a subset of A x B

Let A be a set,
A binary relation on A is a subset of A x A




Relations You Already Know

= on N

Thatis, {(x,y) : x =yand x,y € N}

<on R
Thatis, {(x,y) : x<yand x,y € R}

= on }*
Thatis, {(x,y) : x =y and x, y € Y*}

C on P(U) for universe U
That is, {(A,B) : AS Band A, B € P(U)}




More Relation Examples

Rl = {(al 1)1 (ar 2)1 (bl 1)1 (bl 3)1 (CI 3)}

Ry =1{(x,y) : x =y (mod 5) }

R; = {(cy, ¢,) : ¢ is a prerequisite of ¢, }

R, = {(s, ) : student s has taken course c }




Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) € R for everya € A

R is symmetric iff (a,b) € R implies (b,a) € R

R is antisymmetric iff (a,b) € R and a # b implies (b,a) € R

R is transitive iff (a,b)e R and (b,c)e R implies (a,c) € R




Which relations have which properties?

>onN:R- wt 5. A
<onR: nt K. wnot§ .
=ony*: R .
cConPU): R. not$S

Ry={(x,y):x=y(mod5)}: R - S
R; ={(c,, ¢,) : ¢, is a prerequisite of ¢, }: ot R, wot 5,

R is reflexive iff (a,a) € R for everya € A

R is symmetric iff (a,b) € R implies (b, a)e R

R is antisymmetric iff (a,b) € R and a # b implies (b,a) € R
R is transitive iff (a,b)e R and (b, c)e Rimplies (a, c) € R




Which relations have which properties?

= onh N : Reflexive, Antisymmetric, Transitive

< on R : Antisymmetric, Transitive

= on Y* : Reflexive, Symmetric, Antisymmetric, Transitive
C on P(U): Reflexive, Antisymmetric, Transitive

R, ={(x, y) : x=y (mod 5)}: Reflexive, Symmetric, Transitive
R; ={(cy, ¢,) : ¢, is a prerequisite of ¢, }: Antisymmetric

R is reflexive iff (a,a) € R for everya € A

R is symmetric iff (a,b) € R implies (b, a)e R

R is antisymmetric iff (a,b) € R and a # b implies (b,a) € R
R is transitive iff (a,b)e R and (b, c)e Rimplies (a, c) € R




