### **CSE 311:** Foundations of Computing

Lecture 20: CFGs, Relations



### Last class: Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
  - Alphabet  $\Sigma$  of *terminal symbols* that can't be replaced
  - A finite set V of variables that can be replaced
  - One variable, usually **S**, is called the *start symbol*
- The substitution rules involving a variable **A**, written as  $\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$

where each  $w_i$  is a string of variables and terminals – that is  $w_i \in (\mathbf{V} \cup \boldsymbol{\Sigma})^*$ 

#### Last class: How CFGs generate strings

- Begin with "S"
- If there is some variable A in the current string, you can replace it by one of the w's in the rules for A
  - $\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$
  - Write this as  $xAy \Rightarrow xwy$
  - Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be *generated* in this manner after a finite number of steps



| Grammar                                                                                         | Language                                      |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------|
| $S \rightarrow 0S \mid S1 \mid \varepsilon$                                                     | 0*1* 6                                        |
| $\mathbf{S} \rightarrow \mathbf{0S0} \mid \mathbf{1S1} \mid 0 \mid 1 \mid \mathbf{\varepsilon}$ | The set of all binary palindromes             |
| $S \rightarrow 0S1 \mid \epsilon$                                                               | $\{0^n1^n:n\geq0\}$                           |
| $S \rightarrow 0S11 \mid \epsilon$                                                              | $\left\{0^{n}1^{2n}:n\geq0 ight\}$            |
| $S \rightarrow A10$                                                                             | $\left\{ 0^{n}1^{n+1}0:n\geq0 ight\}$         |
| $A \rightarrow 0A1 \mid \epsilon$                                                               |                                               |
| <b>S → (S)   SS  </b> ε                                                                         | The set of all strings of matched parentheses |
| -5 - 5(5)[2(()())])                                                                             |                                               |

Binary strings with equal numbers of 0s and 1s (not just 0<sup>n</sup>1<sup>n</sup>, also 0101, 0110, etc.)

$$S \rightarrow 051|150| \mathcal{E}|55$$



Binary strings with equal numbers of 0s and 1s (not just 0<sup>n</sup>1<sup>n</sup>, also 0101, 0110, etc.)

```
\textbf{S} \rightarrow \textbf{SS} | 0S1 | 1S0 | \epsilon
```

A standard structural induction can show that everything generated by S has an equal # of 0s and 1s

Intuitively, why does this generate all such strings?

#### **Example Context-Free Grammars**

Let  $x \in \{0,1\}^*$ . Define  $f_x^{(k)}(k)$  to be the # of 0s minus # of 1s in the first k characters of x.



 $f_x(k) = 0$  when first k characters have #0s = #1s - starts out at 0  $f_x(0) = 0$ - ends at 0  $f_x(n) = 0$  Three possibilities for  $f_x(k)$  for  $k \in \{1, ..., n-1\}$ 

- $f_x(k) > 0$  for all such k**S**  $\rightarrow$  **0S1**
- $f_x(k) < 0$  for all such k**S**  $\rightarrow$  **1S**0
- $f_x(k) = 0$  for some such k

 $S \rightarrow SS$ 



## $E \rightarrow E + E | E * E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4$ | 5 | 6 | 7 | 8 | 9

Generate (2\*x) + y

 $E \Longrightarrow E + E \Longrightarrow E + Y \Longrightarrow (E) + Y$  $\Rightarrow$  (EXE)  $+ y \Rightarrow$  (2XE) + y $\equiv)(2xx)+y$ 

## $E \rightarrow E + E | E * E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4$ | 5 | 6 | 7 | 8 | 9

Generate (2\*x) + y

```
E \Rightarrow E+E \Rightarrow (E)+E \Rightarrow (E*E)+E \Rightarrow (2*E)+E \Rightarrow (2*x)+E \Rightarrow (2*x)+y
```

Suppose that grammar **G** generates a string **x** 

- A parse tree of x for G has
  - Root labeled S (start symbol of G)
  - The children of any node labeled A are labeled by symbols of w left-to-right for some rule  $A \rightarrow w$
  - The symbols of x label the leaves ordered left-to-right



 $\mathbf{S} \rightarrow \mathbf{0S0} \mid \mathbf{1S1} \mid \mathbf{0} \mid \mathbf{1} \mid \mathbf{\epsilon}$ 

Parse tree of 01110

# $E \rightarrow E + E | E * E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4$ | 5 | 6 | 7 | 8 | 9

Generate x+y\*z in two ways that give two *different* parse trees

# $E \rightarrow E + E | E * E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4$ | 5 | 6 | 7 | 8 | 9

Generate x+y\*z in ways that give two *different* parse trees



building precedence in simple arithmetic expressions

- **E** expression (start symbol)
- T term F factor I identifier N number
  - $E \rightarrow T \mid E+T$
  - $T \rightarrow F \mid F \ast T$
  - $F \rightarrow (E) \mid I \mid N$
  - $I \rightarrow x \mid y \mid z$
  - $N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

 $E \rightarrow E + T \rightarrow T + T \rightarrow T + F + T$ 



X+YXZ

building precedence in simple arithmetic expressions

- **E** expression (start symbol)
- $\mathbf{T}$  term  $\mathbf{F}$  factor  $\mathbf{I}$  identifier  $\mathbf{N}$  number
  - $E \rightarrow T \mid E+T$ **No longer** X+ ¥Z  $T \rightarrow F | F * T$ allows: Ε  $F \rightarrow (E) | I | N$  $I \rightarrow x | y | z$  $N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$ ETT > FXT > FXF DEKT DIRZ.

### CFGs and recursively-defined sets of strings

- A CFG with the start symbol S as its *only* variable recursively defines the set of strings of terminals that S can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by *each* of its variables
  - sometimes necessary to use more than one



**Theorem:** For all regular expressions A there is a CFG that generates precisely the strings A matches

#### **Proof: Structural Induction**

- Basis:
  - $-\epsilon$  is a regular expression
  - **–**  $\boldsymbol{a}$  is a regular expression for any  $\boldsymbol{a} \in \Sigma$
- Recursive step:
  - If A and B are regular expressions then so are:
    - $\mathbf{A} \cup \mathbf{B}$
    - AB
    - **A**\*

### CFGs can do everything REs can

• CFG to match RE **E** 

 $\mathbf{S} \rightarrow \mathbf{\epsilon}$ 

• CFG to match RE **a** (for any  $a \in \Sigma$ )

 $S \rightarrow a$ 

- Basis:
  - $-\epsilon$  is a regular expression
  - **a** is a regular expression for any  $a \in \Sigma$
- Recursive step:
  - If A and B are regular expressions then so are:
    - $\mathbf{A} \cup \mathbf{B}$
    - AB
    - **A**\*

### CFGs can do everything REs can

Suppose CFG with start symbol  $S_A$  matches RE A IKS: CFG with start symbol  $S_B$  matches RE B

(Then rename variables so no vars used in both)

• CFG to match RE  $\mathbf{A} \cup \mathbf{B}$ Add  $\mathbf{S} \rightarrow \mathbf{S}_{\mathbf{A}} | \mathbf{S}_{\mathbf{B}}$ + rules from both CFGs



- CFG to match RE **AB** Add  $\mathbf{S} \rightarrow \mathbf{S}_{A} \mathbf{S}_{B}$ + rules from both CFGs
- Basis:
  - $-\epsilon$  is a regular expression
  - *a* is a regular expression for any  $a \in \Sigma$
  - Recursive step:
    - $\mbox{ If } A \mbox{ and } B \mbox{ are regular expressions then so are:}$ 
      - $\mathbf{A} \cup \mathbf{B}$

AB

**A**\*

### CFGs can do everything that REs can

• CFG to match RE  $A^*$ Add  $S \rightarrow S_A S \mid \varepsilon$ + rules from CFG with  $S_A$ 

SJAAS JAAS JAASA Basis:  $-\epsilon$  is a regular expression – **a** is a regular expression for any  $\boldsymbol{a} \in \Sigma$ **Recursive step:** - If A and B are regular expressions then so are:  $\mathbf{A} \cup \mathbf{B}$ 

Two new ways of defining languages

- Regular Expressions  $(0 \cup 1)^* 0110 (0 \cup 1)^*$ - easy to understand (declarative)
- Context-free Grammars  $S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$ 
  - more expressive
  - (a way of recursively-defining sets)

We will connect these to machines shortly. But first, we need some new math terminology....