CSE 311: Foundations of Computing

Lecture 20: CFGs, Relations

Last class: Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- Alphabet Σ of terminal symbols that can't be replaced
- A finite set V of variables that can be replaced
- One variable, usually S, is called the start symbol
- The substitution rules involving a variable \mathbf{A}, written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals

- that is $w_{i} \in(\mathbf{V} \cup \Sigma)^{*}$

Last class: How CFGs generate strings

- Begin with "S"
- If there is some variable \mathbf{A} in the current string, you can replace it by one of the w's in the rules for A
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner after a finite number of steps

Last class: Examples $\begin{aligned} S \Rightarrow O S \Rightarrow O S 1 & \Rightarrow 00 S 1 \\ & \Rightarrow 001\end{aligned}$

Grammar	Language
$\mathrm{S}_{\mathrm{S} \rightarrow \mathrm{OS}\|\mathrm{S} 1\| \varepsilon}$	$0 * 1 *$ ¢
S \rightarrow OSO\| $1 \mathbf{S 1 \| 0 \| 1 \| \varepsilon}$	The set of all binary palindromes
S \rightarrow OS $1 \mid \varepsilon$	$\left\{0^{n} 1^{n}: n \geq 0\right\}$
S \rightarrow OS 11 \| ε	$\left\{0^{n} 1^{2 n}: n \geq 0\right\}$
$\begin{aligned} & \mathbf{S} \rightarrow \mathrm{A} 10 \\ & \mathrm{~A} \rightarrow 0 \mathrm{~A} 1 \mid \varepsilon \end{aligned}$	$\left\{0^{n} 1^{n+1} 0: n \geq 0\right\}$
$\underline{S \rightarrow(S)\|S S\| \varepsilon}$	The set of all strings of matched parentheses

Example Context-Free Grammars
Binary strings with equal numbers of 0 s and 1 s (not just $0^{n} 1^{n}$, also 0101, 0110, etc.)

$$
\begin{aligned}
& S \rightarrow \text { OS }|150| \varepsilon \mid S S \\
& 1001
\end{aligned}
$$

Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s (not just $0{ }^{n} 1^{n}$, also 0101, 0110, etc.)

$\mathbf{S} \rightarrow \mathbf{S S} \mid$ OS1 | $1 \mathbf{S O} \| \varepsilon$

A standard structural induction can show that everything generated by S has an equal \# of 0 s and 1s

Intuitively, why does this generate all such strings?

Example Context-Free Grammars

Let $x \in\{0,1\}^{*}$. Define $f_{x}^{\cup}(k)$ to be the \# of 0 s minus \# of 1 s in the first k characters of x.

$$
\text { E.g., for } x=011100
$$

$f_{x}(k)=0$ when first k characters have \#0s = \#1s

- starts out at 0

$$
\begin{aligned}
& f_{x}(0)=0 \\
& f_{x}(n)=0
\end{aligned}
$$

- ends at 0

Example Context-Free Grammars

Three possibilities for $f_{x}(k)$ for $k \in\{1, \ldots, n-1\}$

- $f_{x}(k)>0$ for all such k

$\mathrm{S} \rightarrow$ 0S1
- $f_{x}(k)<0$ for all such k
$S \rightarrow$ 1S0
- $f_{x}(k)=0$ for some such k

$$
\mathbf{S} \rightarrow \mathbf{S S}
$$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
\begin{aligned}
E & \Rightarrow E+E \Rightarrow E+Y \Rightarrow(E)+y \\
& \Rightarrow(E * E)+y \Rightarrow(2 * E)+y \\
& \Rightarrow(2 * x)+y
\end{aligned}
$$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
- The symbols of x label the leaves ordered left-to-right

$$
\begin{aligned}
& S \Rightarrow O S O \Rightarrow O I S 1 O \Rightarrow O l 110 \\
& S \rightarrow O S O|1 S 1| 0|1| \varepsilon
\end{aligned}
$$

Parse tree of 01110

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two ways that give two different parse trees

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in ways that give two different parse trees

building precedence in simple arithmetic expressions

- E -expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N}-number
$\mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T}$
$\mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T}$
$\mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N}$

$$
x+y * z
$$

I $\rightarrow x|y| z$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

$$
E \Rightarrow E+T \Rightarrow T+T \Rightarrow T+F * T
$$

building precedence in simple arithmetic expressions

- E -expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number
$\mathrm{E} \rightarrow \mathbf{T} \mid \mathrm{E}+\mathbf{T}$
No longer
$\mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T}$
$\mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N}$ allows:

I $\rightarrow x|y| z$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

$$
\begin{aligned}
E \Rightarrow T \Rightarrow F * T & \Rightarrow F \not F F \\
& \Rightarrow F \in I
\end{aligned}
$$

CFGs and recursively-defined sets of strings

- A CFG with the start symbol \mathbf{S} as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- sometimes necessary to use more than one

CFGs and regular expressions

> Theorem: For all regular expressions A there is a CFG that generates precisely the strings A matches

Proof: Structural Induction

- Basis:
$-\varepsilon$ is a regular expression
$-\boldsymbol{a}$ is a regular expression for any $\boldsymbol{a} \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
$A \cup B$
AB
A*

CFGs can do everything REs can

- CFG to match RE ε

$\mathbf{S} \rightarrow \varepsilon$

- CFG to match RE a (for any a $\in \Sigma$)
$S \rightarrow a$
- Basis:
$-\varepsilon$ is a regular expression
$-\boldsymbol{a}$ is a regular expression for any $\mathbf{a} \in \Sigma$
- Recursive step:
- If A and B are regular expressions then so are:
$A \cup B$
AB
A*

CFGs can do everything REs can

Suppose CFG with start symbol \mathbf{S}_{A} matches RE A
IHS: CFG with start symbol S_{B} matches RE B
(Then rename variables so no vars used in both)

- $C F G$ to match RE $A \cup B$
 $\operatorname{Ad} \mathbf{S} \rightarrow \mathbf{S}_{\mathbf{A}} \mid \mathbf{S}_{\mathbf{B}}$
+ rules from both CFGs

- CFG to match RE AB

Add $\mathbf{S} \rightarrow \mathbf{S}_{\mathrm{A}} \mathbf{S}_{\mathrm{B}}$

+ rules from both CFGs
- Basis:
$-\varepsilon$ is a regular expression
- \mathbf{a} is a regular expression for any $a \in \Sigma$
- Recursive step:
- If A and B are regular expressions then so are:
$A \cup B$
AB
A*

CFGs can do everything that REs can

- $\begin{gathered}\text { CFF to match RE } \\ \text { Add } S \rightarrow S, S \mid \varepsilon\end{gathered} \quad " S=1 i s t$ of $A "$
+ rules from CFG with S_{A}

$$
\begin{aligned}
& s \Rightarrow \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& =356 \\
& \begin{array}{l}
\text { Recursive } \\
- \text { If } A \text { and } B \\
A \cup B \\
A B
\end{array}
\end{aligned}
$$

So far: Languages - REs and CFGs

Two new ways of defining languages

- Regular Expressions
$(0 \cup 1) * 0110(0 \cup 1) *$
- easy to understand (declarative)
- Context-free Grammars $\quad \mathbf{S} \rightarrow$ SS | 0 S1 | 1 S0 | ε
- more expressive
- (a way of recursively-defining sets)

We will connect these to machines shortly.
But first, we need some new math terminology....

