CSE 311: Foundations of Computing

Lecture 19: Context-Free Grammars

[Audience looks around]
"What is going on? There must be some context we're missing"

Last class: Languages: Sets of Strings

- Subsets of strings are called languages
- Examples:
$-\Sigma^{*}=$ All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Binary strings with an equal \# of 0's and 1's
- Legal variable names in Java/C/C++
- Syntactically correct Java/C/C++ programs
- Valid English sentences

Last class: Regular Expressions

Regular expressions over Σ

- Basis:
ε is a regular expression
(could also include \varnothing)
a is a regular expression for any $a \in \Sigma$
- Recursive step:

If A and B are regular expressions then so are:
$A \cup B$
AB
A*

Last class: Regular Expression is a "pattern"

ε matches the empty string
a matches the one character string a
$A \cup B$ matches all strings that either \mathbf{A} matches or B matches (or both)
$A B$ matches all strings that have a first part that A matches followed by a second part that B matches
A* matches all strings that have any number of strings (even 0) that A matches, one after another

Last class: Examples

Regular Expression	Language
$001 *$	$\{00,001,0011,00111, \ldots\}$
$0 * 1 *$	$\{$ Binary strings with any number of 0s followed by any number of 1s $\}$
$(0 \cup 1) 0(0 \cup 1) 0$	$\{0000,1000,0010,1010\}$
$(0 * 1 *) *$	$\{$ All binary strings $\}=\{0,1\}^{*}$
$(0 \cup 1) *$	$\{$ All binary strings $\}=\{0,1\}^{*}$
$(0 \cup 1) * 0110(0 \cup 1)^{*}$	$\{$ All binary strings containing substring $0110\}$

Regular Expressions in Practice

- Used to define the tokens of a programming language
- legal variable names, keywords, etc.
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
boolean b = m.matches();
[01] a 0 or a 1 ^ start of string $\$$ end of string
[0-9] any single digit \backslash. period \backslash, comma \backslash-minus
. any single character
$a b \quad a$ followed by b
(a|b) a orb
a ? zero or one of a
a* zero or more of a
at one or more of a AA*

- e.g. ^[\-+]? [0-9]* (\. I
,) ? [0-9]+\$

General form of decimal number e.g. 9.12 or $-9,8$ (Europe)

Examples

- All binary strings that have an even \# of 1's

Examples

- All binary strings that have an even \# of 1's
e.g., 0* (10*10*)*

Examples

- All binary strings that have an even \# of 1's
e.g., 0* (10*10*)*
- All binary strings that don't contain 101

Examples

- All binary strings that have an even \# of 1's
e.g., 0* (10*10*)*
- All binary strings that don't contain 101

$$
\text { e.g., 0* }(1 \cup 000 *)^{*} 0 *
$$

at least two 0s between 1s

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
- Palindromes
- Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
- Matched parentheses
- Properly formed arithmetic expressions
- etc.

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- Alphabet Σ of terminal symbols that can't be replaced
- A finite set V of variables that can be replaced
- One variable, usually S, is called the start symbol
- The substitution rules involving a variable \mathbf{A}, written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals

- that is $\mathrm{w}_{\mathrm{i}} \in(\mathbf{V} \cup \Sigma)^{*}$

How CFGs generate strings

- Begin with "S"
- If there is some variable A in the current string, you can replace it by one of the w's in the rules for A
- $A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner after a finite number of steps

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S} 1| \varepsilon$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S} 1| \varepsilon$

$$
0 * 1 *
$$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow$ OS $|\mathbf{S} 1| \varepsilon$

$$
0 * 1 *
$$

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S O} \mid$ S $1|0| 1 \mid \varepsilon$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow$ OS $|\mathbf{S} 1| \varepsilon$

$$
0 * 1 *
$$

Example: $\quad \mathbf{S} \rightarrow$ OSO | $1 \mathbf{S 1 |} 0|1| \varepsilon$
The set of all binary palindromes

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching $0 * 1 *$ but with same number of 0 's and 1 's)

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching $0 * 1 *$ but with same number of 0 's and 1 's)

$\mathbf{S} \rightarrow$ OS1 \| ε

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching $0 * 1 *$ but with same number of 0 's and 1 's)

$$
\mathbf{S} \rightarrow 0 \mathbf{S} 1 \mid \varepsilon
$$

Grammar for $\left\{0^{n} 1^{2 n}: n \geq 0\right\}$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching $0 * 1 *$ but with same number of 0 's and 1 's)

$$
\mathbf{S} \rightarrow 0 \mathbf{S} 1 \mid \varepsilon
$$

Grammar for $\left\{0^{n} 1^{2 n}: n \geq 0\right\}$

$$
\mathbf{S} \rightarrow \mathbf{O S} 11 \mid \varepsilon
$$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching $0 * 1 *$ but with same number of 0 's and 1 's)

$$
\mathbf{S} \rightarrow 0 \mathbf{S} 1 \mid \varepsilon
$$

Grammar for $\left\{0^{n} 1^{n+1} 0: n \geq 0\right\}$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching $0 * 1 *$ but with same number of 0 's and 1 's)

$$
\mathbf{S} \rightarrow 0 \mathbf{S} 1 \mid \varepsilon
$$

Grammar for $\left\{0^{n} 1^{n+1} 0: n \geq 0\right\}$
$\mathbf{S} \rightarrow \mathrm{A} 10$
$\mathrm{A} \rightarrow 0 \mathrm{~A} 1 \mid \varepsilon$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow(\mathbf{S})|\mathbf{S S}| \varepsilon$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow(\mathbf{S})|\mathbf{S S}| \varepsilon$

The set of all strings of matched parentheses

Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s (not just $0{ }^{n 1} 1^{n}$, also 0101, 0110, etc.)

Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s (not just $0{ }^{n 1} 1^{n}$, also 0101, 0110, etc.)

$\mathbf{S} \rightarrow \mathbf{S S} \mid$ OS1 \| 1SO \| ε

An easy structural induction can show that everything generated by S has an equal \# of 0 s and 1s

Why does this generate all such strings?

Example Context-Free Grammars

Let $x \in\{0,1\}^{*}$. Define $f_{x}(k)$ to be the of 0 s minus the number of 1 s in the first k characters of x.

$$
\text { E.g., for } x=011100
$$

$f_{x}(k)=0$ when first k characters have \#0s = \#1s

- starts out at 0

$$
\text { - ends at } 0
$$

$$
\begin{aligned}
& f_{x}(0)=0 \\
& f_{x}(n)=0
\end{aligned}
$$

Example Context-Free Grammars

Three possibilities for $f_{x}(k)$ for $k \in\{1, \ldots, n-1\}$

- $f_{x}(k)>0$ for all such k

$$
\mathrm{S} \rightarrow 0 \mathrm{~S} 1
$$

- $f_{x}(k)<0$ for all such k

$$
S \rightarrow \text { 1S0 }
$$

- $f_{x}(k)=0$ for some such k

$$
\mathbf{S} \rightarrow \mathbf{S S}
$$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $\mathrm{A} \rightarrow \mathrm{w}$
- The symbols of x label the leaves ordered left-to-right
$\mathbf{S} \rightarrow$ OSO \mid 1S1 $|0| 1 \mid \varepsilon$

Parse tree of 01110

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two ways that give two different parse trees

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $x+y * z$ in ways that give two different parse trees

$E \Rightarrow E+E \Rightarrow x+E \Rightarrow x+E * E \Rightarrow x+y * E \Rightarrow x+y * z$
(add x to the product of y and z)

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

No longer allows:

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Still allows:

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term F-factor I-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

CFGs and recursively-defined sets of strings

- A CFG with the start symbol \mathbf{S} as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- sometimes necessary to use more than one

CFGs and regular expressions

Theorem: For any set of strings (language) A described by a regular expression, there is a CFG that recognizes A.

Proof idea:
$P(A)$ is " A is recognized by some CFG"
Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
$-\varepsilon$ is a regular expression
$-a$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If A and B are regular expressions then so are:
$A \cup B$
AB
A*

CFGs are more general than REs

- CFG to match RE ε

$$
\mathbf{S} \rightarrow \varepsilon
$$

- CFG to match RE a (for any $a \in \Sigma$)

$$
\mathbf{S} \rightarrow \mathrm{a}
$$

CFGs are more general than REs

Suppose CFG with start symbol \mathbf{S}_{A} matches RE A CFG with start symbol \mathbf{S}_{B} matches RE B

- CFG to match RE $\mathrm{A} \cup \mathrm{B}$

$$
\mathbf{S} \rightarrow \mathbf{S}_{\mathrm{A}} \mid \mathbf{S}_{\mathrm{B}} \quad+\text { rules from original CFGs }
$$

- CFG to match RE AB

$$
\mathbf{S} \rightarrow \mathbf{S}_{\mathrm{A}} \mathbf{S}_{\mathrm{B}} \quad \text { + rules from original CFGs }
$$

CFGs are more general than REs

Suppose CFG with start symbol \mathbf{S}_{A} matches RE A

- $C F G$ to match RE A* $(=\varepsilon \cup A \cup A A \cup A A A \cup \ldots)$

$$
\mathbf{S} \rightarrow \mathbf{S}_{\mathbf{A}} \mathbf{S} \mid \varepsilon \quad+\text { rules from CFG with } \mathbf{S}_{\mathbf{A}}
$$

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
$::=$ used instead of \rightarrow

BNF for C

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
        block |
    "if" "(" expression ")" statement |
    "if" "(" expression ")" statement "else" statement |
    "switch" "(" expression ")" statement |
    "while" "(" expression ")" statement |
    "do" statement "while" "(" expression ")" ";" |
    "for" "(" expression? ";" expression? ";" expression? ")" statement |
    "goto" identifier ";" |
    "continue" ";" |
    "break" ";" |
        "return" expression? ";"
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression: (
            unary-expression (
            "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
            "^=" | "|="
        )
    )* conditional-expression
conditional-expression:
    logical-OR-expression ( "?" expression ":" conditional-expression )?
```


BNF for (Simple) English

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

