CSE 311: Foundations of Computing

Lecture 19: Context-Free Grammars

[Audience looks around]

"What is going on? There must be some context we're missing"

- Subsets of strings are called *languages*
- Examples:
 - $-\Sigma^* = \text{All strings over alphabet } \Sigma$
 - Palindromes over Σ
 - Binary strings that don't have a 0 after a 1
 - Binary strings with an equal # of 0's and 1's
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences

Regular expressions over Σ

• Basis:

\varepsilon is a regular expression (could also include \emptyset) *a* is a regular expression for any $a \in \Sigma$

• Recursive step:

If **A** and **B** are regular expressions then so are:

A ∪ B AB A*

- ε matches the empty string
- *a* matches the one character string *a*
- A ∪ B matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

Yields a *language* = the set of strings matched by the regular expression

Last class: Examples

Regular Expression	Language
001*	$\{00, 001, 0011, 00111,\}$
0*1*	{Binary strings with any number of Os followed by any number of 1s}
(0 ∪ 1) 0 (0 ∪ 1) 0	$\{0000, 1000, 0010, 1010\}$
(0*1*)*	{All binary strings}={0,1}*
(0 ∪ 1)*	{All binary strings}={0,1}*
(0 ∪ 1)* 0110 (0 ∪ 1)*	{All binary strings containing substring 0110}

Regular Expressions in Practice

- Used to define the *tokens* of a programming language
 - legal variable names, keywords, etc.
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- We can use regular expressions in programs to process strings!

<pre>Pattern p = Pattern.compile("a*b");</pre>			
Matcher m = p.matcher("aaaaab");			
<pre>boolean b = m.matches();</pre>			
[01]	a 0 or a 1 ^ start of st	ring \$ end of string	
[0-9]	any single digit \mathbf{N} .	period $$ comma $\-$ minus	
•	any single character		
ab	a followed by b	(AB)	
(a b)	a or b	(A ∪ B)	
a ?	zero or one of a	$(A \cup E)$	
a *	zero or more of a	A *	
a +	one or more of a	AA*	
• e.g. ^[\-+]?[0-9]*(\.)?[0-9]+\$			

General form of decimal number e.g. 9.12 or -9,8 (Europe)

e.g., **0*** (**10*10***)*

e.g., 0* (10*10*)*

• All binary strings that *don't* contain 101

e.g., 0* (10*10*)*

• All binary strings that *don't* contain 101

e.g., 0* (1 \cap 000*)* 0*

at least two 0s between 1s

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
 - Palindromes
 - Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
 - Matched parentheses
 - Properly formed arithmetic expressions
 - etc.

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 - Alphabet Σ of *terminal symbols* that can't be replaced
 - A finite set V of variables that can be replaced
 - One variable, usually **S**, is called the *start symbol*
- The substitution rules involving a variable **A**, written as $\begin{array}{c|c} \mathbf{A} \to \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_k \\ \text{where each } \mathbf{w}_i \text{ is a string of variables and terminals} \end{array}$

- that is $w_i \in (\mathbf{V} \cup \Sigma)^*$

How CFGs generate strings

- Begin with "S"
- If there is some variable A in the current string, you can replace it by one of the w's in the rules for A
 - $\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$
 - Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be *generated* in this manner after a finite number of steps

Example: $S \rightarrow 0S | S1 | \epsilon$

Example: $S \rightarrow 0S | S1 | \epsilon$

0*1*

Example: $S \rightarrow 0S \mid S1 \mid \epsilon$

0*1*

Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$

Example: $S \rightarrow 0S \mid S1 \mid \epsilon$

0*1*

Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$

The set of all binary palindromes

(i.e., matching 0*1* but with same number of 0's and 1's)

(i.e., matching 0*1* but with same number of 0's and 1's)

 $\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{2n} : n \ge 0\}$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{2n} : n \ge 0\}$

 $S \rightarrow 0S11 \mid \epsilon$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{n+1} 0 : n \ge 0\}$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{n+1} 0 : n \ge 0\}$

 $S \rightarrow A 10$ $A \rightarrow 0A1 | \epsilon$

Example: $S \rightarrow (S) \mid SS \mid \epsilon$

Example: $S \rightarrow (S) \mid SS \mid \epsilon$

The set of all strings of matched parentheses

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

Binary strings with equal numbers of Os and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

$\textbf{S} \rightarrow \textbf{SS}$ | 0S1 | 1S0 | ϵ

An easy structural induction can show that everything generated by S has an equal # of Os and 1s

Why does this generate all such strings?

Let $x \in \{0,1\}^*$. Define $f_x(k)$ to be the of 0s minus the number of 1s in the first k characters of x.

 $f_x(k) = 0$ when first k characters have #0s = #1s - starts out at 0 $f_x(0) = 0$ - ends at 0 $f_x(n) = 0$ Three possibilities for $f_x(k)$ for $k \in \{1, ..., n-1\}$

- $f_x(k) > 0$ for all such k $S \rightarrow 0S1$
- $f_x(k) < 0$ for all such k

 $\mathbf{S}
ightarrow \mathbf{1S0}$

• $f_x(k) = 0$ for some such k

0 1 n-1 n

n-1

n

 $S \rightarrow SS$

$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$ $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate (2*x) + y

$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$ $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate (2*x) + y

 $\mathsf{E} \Rightarrow \mathsf{E} + \mathsf{E} \Rightarrow (\mathsf{E}) + \mathsf{E} \Rightarrow (\mathsf{E} * \mathsf{E}) + \mathsf{E} \Rightarrow (\mathbf{2} * \mathsf{E}) + \mathsf{E} \Rightarrow (\mathbf{2} * x) + \mathsf{E} \Rightarrow (\mathbf{2} * x) + \mathsf{y}$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of **x** for **G** has
 - Root labeled S (start symbol of G)
 - The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
 - The symbols of x label the leaves ordered left-to-right

 $\mathbf{S} \rightarrow \mathbf{0S0} \mid \mathbf{1S1} \mid \mathbf{0} \mid \mathbf{1} \mid \mathbf{\epsilon}$

Parse tree of 01110

$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$ $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate x+y*z in two ways that give two *different* parse trees

$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$ $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate x+y*z in ways that give two *different* parse trees

- **E** expression (start symbol)
- \mathbf{T} term \mathbf{F} factor \mathbf{I} identifier \mathbf{N} number
 - $E \rightarrow T \mid E+T$
 - $T \rightarrow F \mid F * T$
 - $F \rightarrow (E) \mid I \mid N$

 $I \rightarrow x \mid y \mid z$

 $N \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

No longer allows: E

- **E** expression (start symbol)
- \mathbf{T} term \mathbf{F} factor \mathbf{I} identifier \mathbf{N} number
 - $E \rightarrow T \mid E+T$
 - $T \rightarrow F \mid F * T$
 - $F \rightarrow (E) \mid I \mid N$
 - $I \rightarrow x \mid y \mid z$
 - $\textbf{N} \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

- **E** expression (start symbol)
- \mathbf{T} term \mathbf{F} factor \mathbf{I} identifier \mathbf{N} number
 - $E \rightarrow T \mid E+T$
 - $T \rightarrow F \mid F * T$
 - $F \rightarrow (E) \mid I \mid N$
 - $I \rightarrow x \mid y \mid z$
 - $N \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Still

- **E** expression (start symbol)
- \mathbf{T} term \mathbf{F} factor \mathbf{I} identifier \mathbf{N} number
 - $E \rightarrow T \mid E+T$
 - $T \rightarrow F \mid F * T$
 - $F \rightarrow (E) \mid I \mid N$
 - $I \rightarrow x \mid y \mid z$
 - $N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

CFGs and recursively-defined sets of strings

- A CFG with the start symbol S as its *only* variable recursively defines the set of strings of terminals that S can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by *each* of its variables
 - sometimes necessary to use more than one

Theorem: For any set of strings (language) *A* described by a regular expression, there is a CFG that recognizes *A*.

Proof idea:

P(A) is "A is recognized by some CFG"

Structural induction based on the recursive definition of regular expressions...

- Basis:
 - $-\epsilon$ is a regular expression
 - *a* is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are: $A \cup B$
 - AB
 - **A***

CFGs are more general than **REs**

• CFG to match RE **E**

 $S \to \epsilon$

• CFG to match RE **a** (for any $a \in \Sigma$)

 $\mathbf{S} \rightarrow \mathbf{a}$

CFGs are more general than **REs**

Suppose CFG with start symbol S_A matches RE A CFG with start symbol S_B matches RE B

- CFG to match RE $\mathbf{A} \cup \mathbf{B}$
 - $S \rightarrow S_A \mid S_B$ + rules from original CFGs
- CFG to match RE AB

 $\mathbf{S} \rightarrow \mathbf{S}_{A} \mathbf{S}_{B}$ + rules from original CFGs

CFGs are more general than **REs**

Suppose CFG with start symbol S_A matches RE A

• CFG to match RE A^* (= $\varepsilon \cup A \cup AA \cup AA \cup ...$)

 $\mathbf{S} \rightarrow \mathbf{S}_{\mathbf{A}} \mathbf{S} \mid \epsilon$ + rules from CFG with $\mathbf{S}_{\mathbf{A}}$

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.

<identifier>, <if-then-else-statement>,

<assignment-statement>, <condition>

 $::=\,$ used instead of $\,\rightarrow\,$

BNF for C

```
statement:
  ((identifier | "case" constant-expression | "default") ":")*
  (expression? ";" |
  block |
   "if" "(" expression ")" statement |
   "if" "(" expression ")" statement "else" statement |
   "switch" "(" expression ")" statement |
   "while" "(" expression ")" statement |
   "do" statement "while" "(" expression ")" ";" |
   "for" "(" expression? ";" expression? ";" expression? ")" statement |
   "goto" identifier ";" |
   "continue" ";" |
   "break" ";" |
   "return" expression? ";"
  )
block: "{" declaration* statement* "}"
expression:
  assignment-expression%
assignment-expression: (
    unarv-expression (
      "=" | "*=" | "/=" | "&=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
      "^=" | "|="
  )* conditional-expression
conditional-expression:
  logical-OR-expression ( "?" expression ":" conditional-expression )?
```

Back to middle school:

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::==<article><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly The red truck hit a parked car