
CSE 311: Foundations of Computing

Lecture 19: Context-Free Grammars

[Audience looks around] 

“What is going on? There must be some context we’re missing”



Last class: Languages:  Sets of Strings

• Subsets of strings are called languages

• Examples:

– Σ* = All strings over alphabet Σ

– Palindromes over Σ

– Binary strings that don’t have a 0 after a 1

– Binary strings with an equal # of 0’s and 1’s

– Legal variable names in Java/C/C++

– Syntactically correct Java/C/C++ programs

– Valid English sentences



Last class: Regular Expressions

Regular expressions over Σ

• Basis:

εεεε is a regular expression (could also include ∅∅∅∅)

a is a regular expression for any a ∈ Σ

• Recursive step:

If A and B are regular expressions then so are:

A ∪ B

AB

A*



εεεε matches the empty string

a matches the one character string a

A ∪ B matches all strings that either A matches 
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of 
strings (even 0) that A matches, one after 
another

Yields a language = the set of strings

matched by the regular expression

Last class: Regular Expression is a “pattern”



Last class: Examples

Regular Expression Language

001*001*001*001* {00, 001, 0011, 00111, …}

0*1*0*1*0*1*0*1* {Binary strings with any number of 0s 

followed by any number of 1s}

(0 0 0 0 ∪ 1111) 0 0 0 0 (0 0 0 0 ∪ 1111) 0000 {0000, 1000, 0010, 1010}

(0*1*0*1*0*1*0*1*)**** {All binary strings}={0,1}*

(0 0 0 0 ∪ 1111)**** {All binary strings}={0,1}*

(0 0 0 0 ∪ 1111)* 0110 * 0110 * 0110 * 0110 (0 0 0 0 ∪ 1111)**** {All binary strings containing substring 

0110}



Regular Expressions in Practice

• Used to define the tokens of a programming language

– legal variable names, keywords, etc.

• Used in grep, a program that does pattern matching 

searches in UNIX/LINUX

• We can use regular expressions in programs to 

process strings!



Regular Expressions in Java

Pattern p = Pattern.compile("a*b"); 

Matcher m = p.matcher("aaaaab"); 

boolean b = m.matches();

[01] a 0 or a 1     ^ start of string     $ end of string

[0-9] any single digit       \. period    \, comma  \- minus

. any single character

ab         a followed by b            (AB)

(a|b) a or b (A ∪ B)

a? zero or one of a            (A ∪ εεεε)

a* zero or more of a          A*

a+ one or more of a          AA* 

• e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number  e.g.  9.12  or -9,8 (Europe)



Examples

• All binary strings that have an even # of 1’s



Examples

• All binary strings that have an even # of 1’s

e.g.,  0000**** (10101010****10101010****)****



Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g.,  0000**** (10101010****10101010****)****



Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g.,  0000**** (10101010****10101010****)****

e.g.,   0000**** (1 1 1 1 ∪ 000000000000****)* * * * 0000****

at least two 0s between 1s



Limitations of Regular Expressions

• Not all languages can be specified by regular 

expressions

• Even some easy things like 

– Palindromes

– Strings with equal number of 0’s and 1’s

• But also more complicated structures in 

programming languages

– Matched parentheses

– Properly formed arithmetic expressions

– etc.



Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set 

of substitution rules involving

– Alphabet ΣΣΣΣ of terminal symbols that can’t be replaced

– A finite set V of variables that can be replaced

– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as

A → w1 |  w2 | ⋯ | wk

where each wi is a string of variables and terminals

– that is wi ∈ (V ∪ ΣΣΣΣ)*



How CFGs generate strings

• Begin with “S”

• If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A

– A → w1 |  w2 | ⋯ | wk

– Write this as    xAy ⇒ xwy

– Repeat until no variables left

• The set of strings the CFG describes are all strings, 
containing no variables, that can be generated in this 
manner after a finite number of steps



Example Context-Free Grammars

Example: S → 0S | S1 | ε



Example Context-Free Grammars

Example: S → 0S | S1 | ε

0*1*0*1*0*1*0*1*



Example Context-Free Grammars

Example: S → 0S | S1 | ε

Example:      S → 0S0 | 1S1 | 0 | 1 | ε

0*1*0*1*0*1*0*1*



Example Context-Free Grammars

Example: S → 0S | S1 | ε

Example:      S → 0S0 | 1S1 | 0 | 1 | ε

The set of all binary palindromes

0*1*0*1*0*1*0*1*



Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)



Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

S → 0S1 | ε



Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0	1�	: � ≥ 0

S → 0S1 | ε



Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0	1�	: � ≥ 0

S → 0S1 | ε

S → 0S11 | ε



Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0	1	��0: � ≥ 0

S → 0S1 | ε



Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0	1	��0: � ≥ 0

S → 0S1 | ε

S → A10

A → 0A1 | ε



Example Context-Free Grammars

Example:       S S S S → (S) (S) (S) (S) | SSSSSSSS | ε



Example Context-Free Grammars

Example:       S S S S → (S) (S) (S) (S) | SSSSSSSS | ε

The set of all strings of matched parentheses



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

S S S S → SSSSSSSS | 0SSSS1 | 1SSSS0 | ε

An easy structural induction can show that everything 

generated by S has an equal # of 0s and 1s

Why does this generate all such strings?



Let � ∈ {0,1}∗. Define �� � to be the of 0s minus the 

number of 1s in the first � characters of �.

E.g., for x = 011100

�� � = 0 when first k characters have #0s = #1s

– starts out at 0 �� 0 = 0

– ends at 0 �� � = 0

0     1     2     3     4     5     6

Example Context-Free Grammars

�



Three possibilities for ��(�) for � ∈ {1, … , � − 1}

• �� � > 0 for all such �

• �� � < 0 for all such �

• �� � = 0 for some such �

Example Context-Free Grammars

0     1                         n-1 n

S S S S → 0SSSS1

S S S S → 1SSSS0

S S S S → SSSSSSSS

0     1                         n-1 n

0     1                         n-1 n



Simple Arithmetic Expressions

EEEE→ EEEE+EEEE | EEEE∗E E E E | (EEEE) | x | y | z | 0 | 1 | 2 | 3 | 4 

| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y



Simple Arithmetic Expressions

EEEE→ EEEE+EEEE | EEEE∗E E E E | (EEEE) | x | y | z | 0 | 1 | 2 | 3 | 4 

| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y

E ⇒ E+E ⇒ (E)+E ⇒ (E∗E)+E ⇒ (2∗E)+E ⇒ (2∗x)+E ⇒ (2∗x)+y



Parse Trees 

Suppose that grammar G generates a string x

• A parse tree of x for G has

– Root labeled S (start symbol of G)

– The children of any node labeled AAAA are labeled by 

symbols of w left-to-right  for some rule A → w

– The symbols of x label the leaves ordered left-to-right

S → 0S0 | 1S1 | 0 | 1 | ε

S

0 0S

S1 1

1
Parse tree of 01110



Simple Arithmetic Expressions

EEEE→ EEEE+EEEE | EEEE∗E E E E | (EEEE) | x | y | z | 0 | 1 | 2 | 3 | 4 

| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in two ways that give two different 

parse trees



Simple Arithmetic Expressions

EEEE→ EEEE+EEEE | EEEE∗E E E E | (EEEE) | x | y | z | 0 | 1 | 2 | 3 | 4 

| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in ways that give two different parse trees

E ⇒ E+E ⇒ x+E ⇒ x+E∗E ⇒ x+y∗E ⇒ x+y∗z

(add x to the product of y and z)

E ⇒ E∗E ⇒ E+E∗E ⇒ x+E∗E

⇒ x+y∗E ⇒ x+y∗z

(add x to y, then multiply by z)

E

E

+

x

E*

z

y

E E

E

E +

x

E

*

zy

E E



building precedence in simple arithmetic expressions

• E – expression  (start symbol)

• T – term   F – factor   I – identifier  N - number

E → T | E+T

T → F | F∗T

F → (E) | I | N

I → x | y | z

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
E

E

+

x

E*

z

y

E E

No longer

allows:



building precedence in simple arithmetic expressions

• E – expression  (start symbol)

• T – term   F – factor   I – identifier  N - number

E → T | E+T

T → F | F∗T

F → (E) | I | N

I → x | y | z

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

F

+
x

T*

zy

T

?



building precedence in simple arithmetic expressions

• E – expression  (start symbol)

• T – term   F – factor   I – identifier  N - number

E → T | E+T

T → F | F∗T

F → (E) | I | N

I → x | y | z

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
E

E

+

x

E

*

zy

E

E

Still

allows:



building precedence in simple arithmetic expressions

• E – expression  (start symbol)

• T – term   F – factor   I – identifier  N - number

E → T | E+T

T → F | F∗T

F → (E) | I | N

I → x | y | z

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
E

T

+

x

T

*

zy

E

F



CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable 

recursively defines the set of strings of terminals 

that S can generate

• A CFG with more than one variable is a 

simultaneous recursive definition of the sets of 

strings generated by each of its variables

– sometimes necessary to use more than one



Theorem:Theorem:Theorem:Theorem: For any set of strings (language) �

described by a regular expression, there is a 

CFG that recognizes �.  

Proof idea:

P(A) is “A is recognized by some CFG”

Structural induction based on the recursive 

definition of regular expressions...

CFGs and regular expressions



Regular Expressions over Σ

• Basis:

– ɛɛɛɛ is a regular expression

– aaaa is a regular expression for any a ∈ Σ

• Recursive step:

– If AAAA and BBBB are regular expressions then so are:

A ∪ B

AB

A*



CFGs are more general than REs

• CFG to match RE εεεε

S → εεεε

• CFG to match RE aaaa (for any  ∈ Σ)

S → a



CFGs are more general than REs

Suppose CFG with start symbol SA matches RE A A A A 

CFG with start symbol SB matches RE BBBB

• CFG to match RE AAAA ∪ BBBB

S → SA | SB + rules from original CFGs

• CFG to match RE ABABABAB

S → SA SB + rules from original CFGs



CFGs are more general than REs

Suppose CFG with start symbol SA matches RE A A A A 

• CFG to match RE AAAA* (= εεεε ∪ A ∪ AA ∪ AAA ∪ ... )

S → SA S | ε + rules from CFG with SA



Backus-Naur Form  (The same thing…)

BNF (Backus-Naur Form) grammars

– Originally used to define programming 

languages

– Variables denoted by long names in angle 

brackets, e.g.

<identifier>, <if-then-else-statement>,                

<assignment-statement>, <condition>

∷= used instead of  →



BNF for C



BNF for (Simple) English

Back to middle school:

<sentence>∷=<noun phrase><verb phrase>

<noun phrase>∷==<article><adjective><noun>

<verb phrase>∷=<verb><adverb>|<verb><object>

<object>∷=<noun phrase>

Parse:   

The yellow duck squeaked loudly

The red truck hit a parked car


