CSE 311: Foundations of Computing

Lecture 19: Context-Free Grammars

[Audience looks around]
“What is going on? There must be some context we’re missing”
Last class: Languages: Sets of Strings

- Subsets of strings are called *languages*
- Examples:
 - $\Sigma^* =$ All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don’t have a 0 after a 1
 - Binary strings with an equal # of 0’s and 1’s
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences
Regular expressions over Σ

• Basis:
 - ε is a regular expression (could also include \emptyset)
 - a is a regular expression for any $a \in \Sigma$

• Recursive step:
 If A and B are regular expressions then so are:
 - $A \cup B$
 - AB
 - A^*
Last class: Regular Expression is a “pattern”

\(\varepsilon \) matches the **empty string**

\(a \) matches the one character string \(a \)

\(A \cup B \) matches all strings that either \(A \) matches or \(B \) matches (or both)

\(AB \) matches all strings that have a first part that \(A \) matches followed by a second part that \(B \) matches

\(A^* \) matches all strings that have any number of strings (even 0) that \(A \) matches, one after another

Yields a **language** = the set of strings matched by the regular expression
Last class: Examples

<table>
<thead>
<tr>
<th>Regular Expression</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>001^*</td>
<td>{00, 001, 0011, 00111, ...}</td>
</tr>
<tr>
<td>$0^1^$</td>
<td>{Binary strings with any number of 0s followed by any number of 1s}</td>
</tr>
<tr>
<td>$(0 \cup 1) 0 (0 \cup 1) 0$</td>
<td>{0000, 1000, 0010, 1010}</td>
</tr>
<tr>
<td>$(0^1^)^*$</td>
<td>{All binary strings}={0,1}^*</td>
</tr>
<tr>
<td>$(0 \cup 1)^*$</td>
<td>{All binary strings}={0,1}^*</td>
</tr>
<tr>
<td>$(0 \cup 1)^* 0110 (0 \cup 1)^*$</td>
<td>{All binary strings containing substring 0110}</td>
</tr>
</tbody>
</table>
Regular Expressions in Practice

• Used to define the *tokens* of a programming language
 – legal variable names, keywords, etc.

• Used in *grep*, a program that does pattern matching searches in UNIX/LINUX

• We can use regular expressions in programs to process strings!
Regular Expressions in Java

```java
Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaaab");
boolean b = m.matches();
```

Regular Expressions Symbols

- `[01]` a 0 or a 1
- `^` start of string
- `$` end of string
- `[0-9]` any single digit
- `.` period
- `,` comma
- `-` minus
- `.` any single character
- `ab` a followed by b
- `(a|b)` a or b
- `a?` zero or one of a
- `a*` zero or more of a
- `a+` one or more of a

Examples

- `^[\-+]?[0-9]* (\.|\,)?[0-9]+$`
 General form of decimal number e.g. 9.12 or -9,8 (Europe)
Examples

- All binary strings that have an even # of 1's

0* \text{ miny } (0^* 10^* 10^*)^*
(0^* (10^* 11^*)^*)^*
(0^* 1 (10^* 11^*)^*)^*
(0^* (10^* 10^*)^*)^* \cup 0^* (10^* 10^*)^*
Examples

• All binary strings that have an even # of 1’s

 e.g., 0* (10*10*)*
Examples

• All binary strings that have an even # of 1’s

 e.g., 0* (10*10*)*

• All binary strings that don’t contain 101
Examples

• All binary strings that have an even # of 1’s

 e.g., 0* (10*10*)*

• All binary strings that don’t contain 101

 e.g., 0* (1 ∪ 000*)* 0* 0*
 at least two 0s between 1s
Limitations of Regular Expressions

• Not all languages can be specified by regular expressions

• Even some easy things like
 – Palindromes
 – Strings with equal number of 0’s and 1’s

• But also more complicated structures in programming languages
 – Matched parentheses
 – Properly formed arithmetic expressions
 – etc.
Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 – Alphabet Σ of *terminal symbols* that can’t be replaced
 – A finite set V of *variables* that can be replaced
 – One variable, usually S, is called the *start symbol*

• The substitution rules involving a variable A, written as

$$A \rightarrow w_1 \mid w_2 \mid \cdots \mid w_k$$

where each w_i is a string of variables and terminals
 – that is $w_i \in (V \cup \Sigma)^*$
How CFGs generate strings

• Begin with “S”

• If there is some variable A in the current string, you can replace it by one of the w’s in the rules for A

 – A → w₁ | w₂ | ⋯ | wₖ
 – Write this as xAy ⇒ xwy
 – Repeat until no variables left

• The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner after a finite number of steps
Example Context-Free Grammars

Example: \[S \rightarrow 0S \mid S1 \mid \varepsilon \]

Any number of 0's followed by any # of 1's

\[S \Rightarrow 0S \Rightarrow 00S \Rightarrow 000S \Rightarrow 0000 \quad 0k1^x \]

\[= 10001 \]
\[= 100001 \]
\[= \varepsilon \]
Example Context-Free Grammars

Example: \[S \rightarrow 0S \mid S1 \mid \varepsilon \]

\[0^*1^* \]
Example Context-Free Grammars

Example: \(S \rightarrow 0S \mid S1 \mid \varepsilon \)

Example: \(S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \)

0*1*

binary palindromes
Example Context-Free Grammars

Example: \[S \rightarrow 0S \mid S1 \mid \varepsilon \]

\[0^*1^* \]

Example: \[S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \]

The set of all binary palindromes
Example Context-Free Grammars

Grammar for \(\{0^n1^n : n \geq 0\} \)
(i.e., matching \(0^*1^*\) but with same number of 0’s and 1’s)

\[S \rightarrow \varepsilon, 01, 0011, 000111, \ldots \]

\[S \rightarrow 0S1, 1S0 \]
Example Context-Free Grammars

Grammar for \(\{0^n1^n : n \geq 0\}\)
(i.e., matching \(0^*1^*\) but with same number of 0’s and 1’s)

\[S \rightarrow 0S1 \mid \varepsilon \]

\[S \Rightarrow 01 \Rightarrow 0100 = 130 \Rightarrow S \]
Example Context-Free Grammars

Grammar for \(\{0^n1^n : n \geq 0\} \)
(i.e., matching \(0^*1^* \) but with same number of 0’s and 1’s)

\[
S \rightarrow O _ S 1 \mid \varepsilon
\]

Grammar for \(\{0^n1^{2n} : n \geq 0\} \)

\[
S \rightarrow O S S 1 \mid 1
\]
Example Context-Free Grammars

Grammar for \(\{0^n1^n: n \geq 0\} \)
(i.e., matching \(0^*1^*\) but with same number of 0’s and 1’s)

\[
S \rightarrow 0S1 \mid \varepsilon
\]

Grammar for \(\{0^n1^{2n}: n \geq 0\} \)

\[
S \rightarrow 0S11 \mid \varepsilon
\]
Example Context-Free Grammars

Grammar for \(\{0^n1^n: n \geq 0\} \) (i.e., matching \(0^*1^* \) but with same number of 0’s and 1’s)

\[
S \rightarrow 0S1 \mid \varepsilon
\]

Grammar for \(\{0^n1^{n+1}0: n \geq 0\} \)

\[
S \rightarrow A10 \\
A \rightarrow 0A1 \mid \varepsilon
\]
Example Context-Free Grammars

Grammar for \(\{0^n1^n : n \geq 0\} \)
(i.e., matching \(0^*1^* \) but with same number of 0’s and 1’s)

\[
S \rightarrow 0S1 \mid \varepsilon
\]

Grammar for \(\{0^n1^{n+1}0 : n \geq 0\} \)

\[
S \rightarrow A10 \\
A \rightarrow 0A1 \mid \varepsilon
\]
Example Context-Free Grammars

Example: $S \rightarrow (S) \mid SS \mid \varepsilon$
Example Context-Free Grammars

Example: $S \rightarrow (S) \mid SS \mid \varepsilon$

The set of all strings of matched parentheses