CSE 311: Foundations of Computing

- Subsets of strings are called *languages*
- Examples:
 - $-\Sigma^* = \text{All strings over alphabet } \Sigma$
 - Palindromes over $\boldsymbol{\Sigma}$
 - Binary strings that don't have a 0 after a 1
 - Binary strings with an equal # of 0's and 1's
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences

Regular expressions over Σ

• Basis:

\varepsilon is a regular expression (could also include \emptyset) *a* is a regular expression for any $a \in \Sigma$

• Recursive step:

If **A** and **B** are regular expressions then so are:

A ∪ B AB A*

- ε matches the empty string
- *a* matches the one character string *a*
- A ∪ B matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

Yields a *language* = the set of strings matched by the regular expression

Last class: Examples

Regular Expression	Language
001*	$\{00, 001, 0011, 00111,\}$
0*1*	{Binary strings with any number of 0s followed by any number of 1s}
(0 ∪ 1) 0 (0 ∪ 1) 0	$\{0000, 1000, 0010, 1010\}$
(0*1*)*	{All binary strings}={0,1}*
(0 ∪ 1)*	{All binary strings}={0,1}*
(0 ∪ 1)* 0110 (0 ∪ 1)*	{All binary strings containing substring 0110}

Regular Expressions in Practice

- Used to define the *tokens* of a programming language
 - legal variable names, keywords, etc.
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- We can use regular expressions in programs to process strings!

P1-(P w(

Regular Expressions in Java

Pattern p = Pattern.compile("a*b"); Matcher m = p.matcher("aaaaab"); boolean b = m.matches(); [01] a Opra 1 ^ start of string \$ end of string [0-9] any single digit $\$ period $\$, comma $\$ minus any single character 10 ab a followed by b (**AB**) (a b) a or b $(\mathbf{A} \cup \mathbf{B})$ a? zero or one of a $(\mathbf{A} \cup \mathbf{E})$ a* zero or more of a **AA*** a+ one or more of a • e.g. **^**[\-+]?[0-9]*(\.|\,)?[0-9]+\$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

Examples

• All binary strings that have an even # of 1's

 $|0^{*}|0^{*}|^{*}$ O* (10*13*)* ×())* DU)* 1 75-1 € * (10×10×)* $\mathbf{\hat{V}}$

• All binary strings that have an even # of 1's

e.g., **0*** (**10*10***)*

• All binary strings that have an even # of 1's

e.g., 0* (10*10*)*

 • All binary strings that have an even # of 1's

e.g., 0* (10*10*)*

• All binary strings that don't contain 101

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
 - Palindromes
 - Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
 - Matched parentheses
 - Properly formed arithmetic expressions
 - etc.

Context-Free, Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 - Alphabet Σ of *terminal symbols* that can't be replaced
 - A finite set V of variables that can be replaced
 - One variable, usually **S**, is called the *start symbol*
- The substitution rules involving a variable **A**, written as $\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$ where each \mathbf{w}_i is a string of variables and terminals that is $\mathbf{w}_i \in (\mathbf{V} \cup \mathbf{N})^*$

- that is $w_i \in (\mathbf{V} \cup \Sigma)^*$

How CFGs generate strings

- Begin with "S"
- If there is some variable A in the current string, you can replace it by one of the w's in the rules for A
 - $\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$
 - Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be *generated* in this manner after a finite number of steps

Example: $S \rightarrow 0S | S1 | \epsilon$ Any number af O's Fellowed by any # of /* =)005=)0005 Ot 1* 2000=200(=20 (=2 =)00051 -)0000 -) 00005311 -> 100012

Example: $S \rightarrow 0S | S1 | \epsilon$

0*1*

Example Context-Free Grammars

Example: $S \rightarrow 0S | S1 | \epsilon$ 0*1*Example: $S \rightarrow 0S0 | 1S1 | 0 | 1 | \epsilon$ by paindows

Example: $S \rightarrow 0S | S1 | \epsilon$

0*1*

Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$

The set of all binary palindromes

(i.e., matching 0*1* but with same number of 0's and 1's)

$S \rightarrow 0S1 \mid \varepsilon$ $S \rightarrow 0S1 = 00S12 = 001$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\mathbf{S} \rightarrow \mathbf{0S1} \mid \mathbf{\epsilon}$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{2n} : n \ge 0\}$

 $S \rightarrow 0S11 \mid \epsilon$

(i.e., matching 0*1* but with same number of 0's and 1's)

 $S \rightarrow 0S1 \mid \epsilon$

Grammar for $\{0^n 1^{n+1}_n 0: n \ge 0\}$ $\{0^n 1^n_n 1^{n+1}_n 0: n \ge 0\}$

S-> A10 A-JOA1 12

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{n+1} 0 : n \ge 0\}$

 $S \rightarrow A 10$ $A \rightarrow 0A1 | \epsilon$

Example Context-Free Grammars

Example: $S \rightarrow (S) \mid SS \mid \varepsilon$

Example: $S \rightarrow (S) \mid SS \mid \epsilon$

The set of all strings of matched parentheses