CSE 311.: Foundations of Computing

Lecture 19: Context-Free Grammars

N

Llo'" ANNUAL
SYMPOSIUM oN
FORMA GUAGES

L LAN

N (Reon

I‘E(
AN

GRAMMAR!

o &P

A

[Audience looks around]

“What is going on? There must be some context we’re missing”

Last class: Languages: Sets of Strings

* Subsets of strings are called languages

* Examples:
All strings over alphabet X

— Palindromes over X~
— Binary strings that don’t have a O aftera 1
— Binary strings with an equal # of O’'s and 1's
— Legal variable names in Java/C/C++
— Syntactically correct Java/C/C++ programs
— Valid English sentences

Last class: Regular Expressions

Regular expressions over X

* Basis:
€ is a regular expression (could also include @)
a is a regular expression forany a € X

* Recursive step:
If A and B are regular expressions then so are:
AUB
AB
A*

Last class: Regular Expression is a “pattern”

€ matches the empty string
a matches the one character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A

matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after

another
[Yields a language = the set of strings }

matched by the regular expression

Last class: Examples 7AV \J %

|

ok \5(U l)ﬁ

WYAN
S ey B S mudhes

Regular Expression

Language

001*

{00, 001, 0011, 00111, ...}

O*1* 0o \\({Binary strings with any number of Os
A | @ |followed by any number of 1s}
oulo0ulo {0000, 1000, 0010, 1010}
’(0*1*)* {All binary strings}={0,1}*
(0uU 1)* ﬁ% {All binary strings}={0,1}*
(0 U 1)* 0110 (0 U 1)* | {All binary strings containing substring
—

0110}

Regular Expressions in Practice

* Used to define the tokens of a programming language
— legal variable names, keywords, etc.

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

* We can use regular expressions in programs to
process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");

boolean b = m.matches();
[01] aOoral “startofstring $ end ofstring

[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(a|lb) aorb (A U B)
a? zero or one of a (A U g)
ax zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+]1?2[0-91*(\.|\,)?[0-9]+%
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Examples ﬁ? ﬁzo(& 6 00 ow

* All binary strings that have an even # of 1’s

X @*\ §€ | gR)¥ 000 o

o™ 1! JLD Ub}
N @*(zOKO%O x[(f“\%
x [0yt U 0

X (0% | o<)™ 0o AP

Examples

* All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

Examples

* All binary strings that have an even # of 1’s

&
* All binary strings that don’t contain 101

_
o xt*oo< V1)

¥l ol p¥ U**fooﬁﬁ)%ﬂK
o0 xooo((oox) ™ © ok((pgeo) VI
ol x(eou)*

¢
e.g., 0*(10*10%)* o\ 9

O\ @0 Y, [)k DKK
000\ ¥ (po u ¥ ¥ K

Examples

* All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

« All binary strings tha@ontain 101

E.g., 0* (1 U 000*)* O*

at least two Os between 1s

—

o

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like

P Palindromes
/7 — Strings with equal number of O’'s and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— efc.

Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

—> — Alphabet X of terminal symbols that can’t be replaced
— A finite set V of variables that can be replaced

— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A>wy | wy |- | wy

where each w; is a string of variables and terminals
—thatisw, € (VU X)”

How CFGs generate strings

* Begin with “S”

* If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A

— Ao w | wy || wy
— Write thisas XAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner after a finite number of steps

Example Context-Free Grammars

Example: S—>0S|S1]|e¢
6 :7 0S5 =) OS\ =) 0:\ = 0l
[y 0S5 = 005 =) 00

Example Context-Free Grammars

Example: S—>0S|S1]|e¢

O*1* dN\\‘] ﬁ/gg/Oﬁ é{kauo A \/j
g p, & 0% s

Example Context-Free Grammars

Example: S—>0S|S1]|e¢
O*1*

Example: S—>0S0|1S1|0|1]¢

5 = DSD > 00500 =) ‘DDlSLOO
—> Do| | (DO

Example Context-Free Grammars

Example: S—>0S|S1]|e¢

O*1*

TS
Example: S—>0S0|1S1|0|1]¢

The set of all binary palindromes

Example Context-Free Grammars

)’ﬁ |

(i.e., matching 0*1* but with same number of O’s and 1’s)

5_7 05{ £

Example Context-Free Grammars

Grammar for {0"1":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S81|¢

Example Context-Free Grammars

Grammar for {0"1":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S81|¢

Grammar for {0"1%":n > 0}

Example Context-Free Grammars

Grammar for {0"1":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S81|¢

Grammar for {0"1%":n > 0}

S—> 0811 | ¢

Example Context-Free Grammars

Grammar for {0"1":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S81|¢

Grammar for {0"1"*10: n > 0}

o 1" 10
— J L

5 A 10

O AR %\«)y oA [z

Example Context-Free Grammars

Grammar for {0"1":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S81|¢

Grammar for {0"1"*10: n > 0}

S—>A10
A — 0Al | ¢

Example Context-Free Grammars é//[)z k)\ 773

Example: SH>O)]|SS|c¢

o= () > () = (98
~(©©) = L] =200

Example Context-Free Grammars

Eample: SH>O)]|SS|c¢

Ehe set of all strings of matched parentheses

)
8

Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

¢ |5O\€\§S

Sﬁoﬂ\

Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

S—>SS|0S1]|1SO0 | ¢

An easy structural induction can show that everything
generated by S has an equal # of Os and 1s

Why does this generate all such strings?

