[Audience looks around]
“What is going on? There must be some context we’re missing”
• Subsets of strings are called **languages**

• Examples:
 - $\Sigma^* = \text{All strings over alphabet } \Sigma$
 - Palindromes over Σ
 - Binary strings that don’t have a 0 after a 1
 - Binary strings with an equal # of 0’s and 1’s
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences
Regular expressions over Σ

• **Basis:**
 - \emptyset is a regular expression (could also include \emptyset)
 - a is a regular expression for any $a \in \Sigma$

• **Recursive step:**
 If A and B are regular expressions then so are:
 - $A \cup B$
 - AB
 - A^*
Last class: Regular Expression is a “pattern”

ε matches the empty string

a matches the one character string a

A ∪ B matches all strings that either A matches or B matches (or both)

AB matches all strings that have a first part that A matches followed by a second part that B matches

A* matches all strings that have any number of strings (even 0) that A matches, one after another

Yields a language = the set of strings matched by the regular expression
Last class: Examples

<table>
<thead>
<tr>
<th>Regular Expression</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>001*</td>
<td>{00, 001, 0011, 00111, ...}</td>
</tr>
<tr>
<td>01</td>
<td>{Binary strings with any number of 0s followed by any number of 1s}</td>
</tr>
<tr>
<td>((0 \cup 1)\ 0\ (0 \cup 1)\ 0)</td>
<td>{0000, 1000, 0010, 1010}</td>
</tr>
<tr>
<td>(01)*</td>
<td>{All binary strings}={0,1}*</td>
</tr>
<tr>
<td>(0 \cup 1)*</td>
<td>{All binary strings}={0,1}*</td>
</tr>
<tr>
<td>(0 \cup 1)* 0110 (0 \cup 1)*</td>
<td>{All binary strings containing substring 0110}</td>
</tr>
</tbody>
</table>
Regular Expressions in Practice

• Used to define the *tokens* of a programming language
 – legal variable names, keywords, etc.

• Used in `grep`, a program that does pattern matching searches in UNIX/LINUX

• We can use regular expressions in programs to process strings!
Regular Expressions in Java

Pattern \(p = \text{Pattern.compile}("a*b") \);
Matcher \(m = p.\text{matcher}("aaaaab") \);
boolean \(b = m.\text{matches}() \);

\[01\] a 0 or a 1 \^ start of string \$ end of string
\[0-9\] any single digit \. period \, comma \- minus
\. any single character
ab a followed by b \((AB) \)
\(a|b\) a or b \((A \cup B) \)
a? zero or one of a \((A \cup \varepsilon) \)
a* zero or more of a \(A^* \)
a+ one or more of a \(AA^* \)

• e.g. \(^[\-+]?[0-9]*(\.\|\||,)?[0-9]+$ \)
 General form of decimal number e.g. 9.12 or -9,8 (Europe)
Examples

- All binary strings that have an even # of 1’s

\[x (0^*10^*10^*)^* \]
\[x (011)^* \]
\[x (0^*10^*1)^* \]
\[x (011)^* \]
\[x (0^*10^*1)^* \]
Examples

- All binary strings that have an even # of 1's

 e.g., 0* (10*10*)*
Examples

• All binary strings that have an even # of 1’s

 e.g., \(0^* (10^*10^*)^*\)

• All binary strings that don’t contain 101

\[101 \times 0^* (00^*1)^*\]

\[110 \times 0^* (00^*1)^*\]

\[01 \times 0^* (00^*1)^*\]

\[10001 \times 0^* (00^*1)^*\]
Examples

- All binary strings that have an even # of 1’s

 e.g., \(0^* (10^*10^*)^*\)

- All binary strings that *don’t* contain 101

 e.g., \(0^* (1 \cup 000^*)^* 0^*\)
 at least two 0s between 1s
Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
 - Palindromes
 - Strings with equal number of 0’s and 1’s
- But also more complicated structures in programming languages
 - Matched parentheses
 - Properly formed arithmetic expressions
 - etc.
Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 – Alphabet Σ of *terminal symbols* that can’t be replaced
 – A finite set V of *variables* that can be replaced
 – One variable, usually S, is called the *start symbol*

• The substitution rules involving a variable A, written as
 $$A \rightarrow w_1 \mid w_2 \mid \cdots \mid w_k$$
 where each w_i is a string of variables and terminals
 – that is $w_i \in (V \cup \Sigma)^*$
How CFGs generate strings

• Begin with “S”

• If there is some variable A in the current string, you can replace it by one of the w’s in the rules for A
 – $A \rightarrow w_1 \mid w_2 \mid \cdots \mid w_k$
 – Write this as $xAy \Rightarrow xwy$
 – Repeat until no variables left

• The set of strings the CFG describes are all strings, containing no variables, that can be *generated* in this manner after a finite number of steps
Example Context-Free Grammars

Example: \[S \rightarrow 0S \mid S1 \mid \varepsilon \]

\[
S \Rightarrow 0S \Rightarrow 0S1 \Rightarrow 010 = 100\\
S \Rightarrow 0S \Rightarrow 0S0 \Rightarrow 000
\]
Example Context-Free Grammars

Example: \[S \rightarrow 0S \mid S1 \mid \varepsilon \]

\[0^*1^* \]

any # of 0s followed by any # of 1s
Example Context-Free Grammars

Example: \[S \rightarrow 0S \mid S1 \mid \varepsilon \]

\[0^*1^* \]

Example: \[S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \]

\[S \Rightarrow 0S0 \Rightarrow 000 \Rightarrow 001 \varepsilon 100 \Rightarrow 0011100 \]
Example Context-Free Grammars

Example: \[S \rightarrow 0S | S1 | \varepsilon \]

0*1*

Example: \[S \rightarrow 0S0 | 1S1 | 0 | 1 | \varepsilon \]

The set of all binary palindromes
Example Context-Free Grammars

Grammar for \(\{0^n1^n : n \geq 0\} \)
(i.e., matching \(0^*1^*\) but with same number of 0's and 1's)

\[S \rightarrow 0S1 | \epsilon \]
Example Context-Free Grammars

Grammar for \(\{0^n1^n: n \geq 0\} \)
(i.e., matching \(0^*1^* \) but with same number of 0’s and 1’s)

\[
S \rightarrow 0S1 \mid \varepsilon
\]
Example Context-Free Grammars

Grammar for \(\{0^n1^n : n \geq 0\} \)
(i.e., matching \(0^*1^* \) but with same number of 0’s and 1’s)

\[
S \rightarrow 0S1 \mid \varepsilon
\]

Grammar for \(\{0^n1^{2n} : n \geq 0\} \)
Example Context-Free Grammars

Grammar for \(\{0^n1^n: n \geq 0\} \)
(i.e., matching \(0^*1^* \) but with same number of 0’s and 1’s)

\[
S \rightarrow 0S1 \mid \varepsilon
\]

Grammar for \(\{0^n1^{2n}: n \geq 0\} \)

\[
S \rightarrow 0S11 \mid \varepsilon
\]
Example Context-Free Grammars

Grammar for \(\{0^n1^n : n \geq 0\} \)
(i.e., matching \(0^*1^*\) but with same number of 0’s and 1’s)

\[
S \rightarrow 0S1 | \varepsilon
\]

Grammar for \(\{0^n1^{n+1}0 : n \geq 0\} \)

\[
S \rightarrow AB
A \rightarrow 0A1 | \varepsilon
B \rightarrow 10
\]

\[
S \rightarrow A10
A \rightarrow 0A1 | \varepsilon
\]
Example Context-Free Grammars

Grammar for \(\{0^n1^n: n \geq 0\} \)
(i.e., matching \(0^*1^*\) but with same number of 0’s and 1’s)

\[S \rightarrow 0S1 | \varepsilon \]

Grammar for \(\{0^n1^{n+1}0: n \geq 0\} \)

\[S \rightarrow A \ 10 \]
\[A \rightarrow 0A1 | \varepsilon \]
Example Context-Free Grammars

Example: \[S \rightarrow (S) \mid SS \mid \varepsilon \]

\[S \Rightarrow (S) \Rightarrow SS \Rightarrow (S)S \]
\[\Rightarrow ((S)(S)) \Rightarrow ((1)(S)) \Rightarrow ((U)(U)) \]
Example Context-Free Grammars

Example: \[S \rightarrow (S) \mid SS \mid \varepsilon \]

The set of all strings of matched parentheses
Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0^n1^n, also 0101, 0110, etc.)

$$S \rightarrow 0S1 \mid 1S0 \mid \varepsilon \mid SS$$

0110
Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s (not just 0^n1^n, also 0101, 0110, etc.)

$$S \rightarrow SS \mid 0S1 \mid 1S0 \mid \varepsilon$$

An easy structural induction can show that everything generated by S has an equal # of 0s and 1s

Why does this generate all such strings?