CSE 311: Foundations of Computing

Lecture 19: Context-Free Grammars

[Audience looks around]

"What is going on? There must be some context we're missing"

Last class: Languages: Sets of Strings

- Subsets of strings are called languages
- Examples:
 - Σ^* = All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don't have a 0 after a 1
 - Binary strings with an equal # of 0's and 1's
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences

Regular expressions over Σ

• Basis:

\varepsilon is a regular expression (could also include \emptyset) **a** is a regular expression for any $a \in \Sigma$

• Recursive step:

If **A** and **B** are regular expressions then so are:

A ∪ **B AB**

A*

- ε matches the empty string
- *a* matches the one character string *a*
- $A \cup B$ matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

Yields a *language* = the set of strings matched by the regular expression

Last class: Examples

OX IX	1114	i and i
	$\bigcup_{i \in \mathcal{I}} \mathcal{I}^{i} \sim$	5 Matches & S. Match
Regular Expression		Language
001*		$\{00, 001, 0011, 00111,\}$
0*1* 7	00111 11 0	{Binary strings with any number of Os followed by any number of 1s}
(0 \cup 1) 0 (0) U 1) O	$\{0000, 1000, 0010, 1010\}$
(0*1*)*		{All binary strings}={0,1}*
(0 ∪ 1)*	2*	{All binary strings}={0,1}*
(0 ∪ 1)* 01	L10 (0 U 1)*	{All binary strings containing substring 0110}

AUB

Regular Expressions in Practice

- Used to define the *tokens* of a programming language
 - legal variable names, keywords, etc.
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

<pre>Pattern p = Pattern.compile("a*b");</pre>			
Matcher m = p.matcher("aaaaab");			
<pre>boolean b = m.matches();</pre>			
[01] a 0 or a 1 ^ start of string \$ end of string			
$[0-9]$ any single digit \land . period \land , comma \land – minus			
. any single character			
ab a followed by b (AB)			
(a b) a or b $(A \cup B)$			
a? zero or one of a $(A \cup \varepsilon)$			
a* zero or more of a A*			
a+ one or more of a AA*			
• e.g. ^[\-+]?[0-9]*(\.)?[0-9]+\$			
General form of decimal number e.g. 9.12 or -9,8 (Europe)			

• All binary strings that have an even # of 1's

e.g., **0*** (**10*10***)*

All binary strings that have an even # of 1's

2 × 101 2× All binary strings that don't contain 101

e.g., **0*** (**10*10***)*

 \mathcal{O} (000) \mathcal{O} \mathcal{K} 1000

• All binary strings that have an even # of 1's

e.g., **0*** (**10*10***)*

• All binary strings that don't contain 101

e.g., **0*** (**1** \cup **000***)* **0***

at least two 0s between 1s

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
 - Palindromes
 - Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
 - Matched parentheses
 - Properly formed arithmetic expressions
 - etc.

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- \longrightarrow Alphabet Σ of *terminal symbols* that can't be replaced
 - A finite set V of variables that can be replaced
 - One variable, usually **S**, is called the *start symbol*
 - The substitution rules involving a variable **A**, written as $\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$

where each w_i is a string of variables and terminals – that is $w_i \in (\mathbf{V} \cup \boldsymbol{\Sigma})^*$

How CFGs generate strings

- Begin with "S"
- If there is some variable A in the current string, you can replace it by one of the w's in the rules for A
 - $\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$
 - Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be *generated* in this manner after a finite number of steps

Example: $S \rightarrow 0S \mid S1 \mid \epsilon$

S = 0S = 0S = 0S = 0EI = 0IS = 0S = 00S = 700

Example:
$$S \rightarrow 0S | S1 | \varepsilon$$

 $0*1*$ $hy # af 05 Alowed by
 $ay # of b$$

Example: $S \rightarrow 0S | S1 | \epsilon$

0*1*

Example: $S \rightarrow 0S0 | 1S1 | 0 | 1 | \varepsilon$ $S \Rightarrow 0S0 \Rightarrow 00S0 \Rightarrow 00ISL00$ $\Rightarrow 00III00$

0*1*

Example:
$$\mathbf{S} \rightarrow \mathbf{0}\mathbf{S}\mathbf{0} \mid \mathbf{1}\mathbf{S}\mathbf{1} \mid \mathbf{0} \mid \mathbf{1} \mid \mathbf{\varepsilon}$$

The set of all binary palindromes

S-> 051 E

Grammar for $\{0^n 1^n : n \ge 0\}$

(i.e., matching 0*1* but with same number of 0's and 1's)

(i.e., matching 0*1* but with same number of 0's and 1's)

$S \rightarrow 0S1 \mid \epsilon$

(i.e., matching 0*1* but with same number of 0's and 1's)

$S \rightarrow 0S1 \mid \epsilon$

Grammar for $\{0^n 1^{2n} : n \ge 0\}$

(i.e., matching 0*1* but with same number of 0's and 1's)

$S \rightarrow 0S1 \mid \epsilon$

Grammar for $\{0^n 1^{2n} : n \ge 0\}$

$\textbf{S} \rightarrow \textbf{OS11} ~|~ \epsilon$

(i.e., matching 0*1* but with same number of 0's and 1's)

 $S \rightarrow 0S1 \mid \epsilon$

(i.e., matching 0*1* but with same number of 0's and 1's)

$S \rightarrow 0S1 \mid \epsilon$

Grammar for $\{0^n 1^{n+1} 0 : n \ge 0\}$

 $S \rightarrow A 10$ $A \rightarrow 0A1 | \epsilon$

Example: $S \rightarrow (S) \mid SS \mid \varepsilon$ $S \Rightarrow (S) \Rightarrow (SS) \Rightarrow (SS)$ $\Rightarrow (((())) \Rightarrow (((())) \Rightarrow (()))$

分三ろし

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

5-7051 150 E SS

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

```
\textbf{S} \rightarrow \textbf{SS} | 0S1 | 1S0 | \epsilon
```

An easy structural induction can show that everything generated by S has an equal # of 0s and 1s

Why does this generate all such strings?