
CSE 311: Foundations of Computing

Lecture 19: Context-Free Grammars

[Audience looks around]
“What is going on? There must be some context we’re missing”

Last class: Languages: Sets of Strings

• Subsets of strings are called languages
• Examples:
– S*=	All strings over alphabet S
– Palindromes over S
– Binary strings that don’t have a 0 after a 1
– Binary strings with an equal # of 0’s and 1’s
– Legal variable names in Java/C/C++
– Syntactically correct Java/C/C++ programs
– Valid English sentences

Last class: Regular Expressions

Regular expressions over S
• Basis:

e is a regular expression (could also include Æ)
a is a regular expression for any a Î S

• Recursive step:
If A and B are regular expressions then so are:

AÈ B
AB
A*

e matches the empty string
a matches the one character string a
A È B matches all strings that either A matches

or B matches (or both)
AB matches all strings that have a first part that A

matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Yields a language = the set of strings
matched by the regular expression

Last class: Regular Expression is a “pattern”

Last class: Examples

Regular Expression Language
001* {00, 001, 0011, 00111, …}

0*1* {Binary strings with any number of 0s
followed by any number of 1s}

(0 È 1) 0 (0 È 1) 0 {0000, 1000, 0010, 1010}

(0*1*)* {All binary strings}={0,1}*

(0 È 1)* {All binary strings}={0,1}*

(0 È 1)* 0110 (0 È 1)* {All binary strings containing substring
0110}

Regular Expressions in Practice

• Used to define the tokens of a programming language
– legal variable names, keywords, etc.

• Used in grep, a program that does pattern matching
searches in UNIX/LINUX

• We can use regular expressions in programs to
process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
boolean b = m.matches();

[01] a 0 or a 1 ^ start of string $ end of string
[0-9] any single digit \. period \, comma \- minus
. any single character
ab a followed by b (AB)
(a|b) a or b (A È B)
a? zero or one of a (A È e)
a* zero or more of a A*
a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Examples

• All binary strings that have an even # of 1’s

Examples

• All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g., 0* (10*10*)*

Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g., 0* (10*10*)*

e.g., 0* (1 È 000*)* 0*

at least two 0s between 1s

Limitations of Regular Expressions

• Not all languages can be specified by regular
expressions

• Even some easy things like
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in
programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.

Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving
– Alphabet S of terminal symbols that can’t be replaced
– A finite set V of variables that can be replaced
– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as
A® w1 | w2 | ⋯ | wk

where each wi is a string of variables and terminals
– that is wi ∈ (VÈ S)*

How CFGs generate strings

• Begin with “S”

• If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A
– A® w1 | w2 | ⋯ | wk

– Write this as xAy ⇒ xwy
– Repeat until no variables left

• The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner after a finite number of steps

Example Context-Free Grammars

Example: S ® 0S | S1 | e

Example Context-Free Grammars

Example: S ® 0S | S1 | e

0*1*

Example Context-Free Grammars

Example: S ® 0S | S1 | e

Example: S ® 0S0 | 1S1 | 0 | 1 | e

0*1*

Example Context-Free Grammars

Example: S ® 0S | S1 | e

Example: S ® 0S0 | 1S1 | 0 | 1 | e

The set of all binary palindromes

0*1*

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

S ® 0S1 | e

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1"!: 𝑛 ≥ 0

S ® 0S1 | e

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1"!: 𝑛 ≥ 0

S ® 0S1 | e

S ® 0S11 | e

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1!#$0: 𝑛 ≥ 0

S ® 0S1 | e

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1!#$0: 𝑛 ≥ 0

S ® 0S1 | e

S ® A10
A ® 0A1 | e

Example Context-Free Grammars

Example: S ® (S) | SS | e

Example Context-Free Grammars

Example: S ® (S) | SS | e

The set of all strings of matched parentheses

Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

S ® SS | 0S1 | 1S0 | e

An easy structural induction can show that everything
generated by S has an equal # of 0s and 1s

Why does this generate all such strings?

