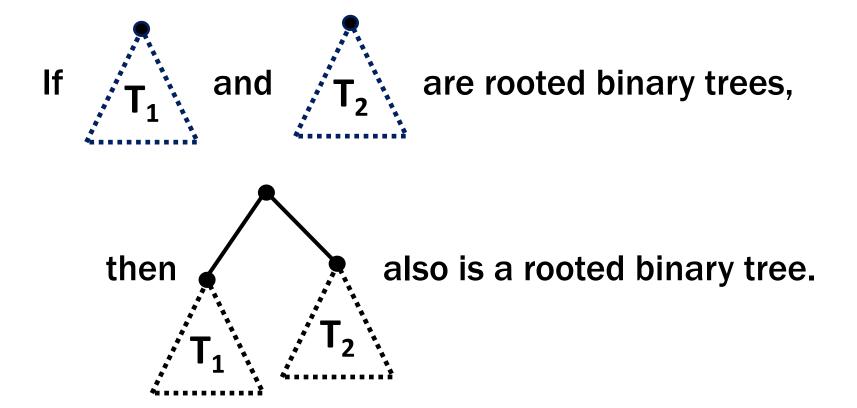
CSE 311: Foundations of Computing

Lecture 18: Strings and Regular Expressions

Last time: Rooted Binary Trees

Basis:

- is a rooted binary tree
- Recursive step:



Defining Functions on Rooted Binary Trees

• size(•) := 1

• size
$$\left(\begin{array}{c} \vdots \\ \vdots \\ T_1 \\ \vdots \\ T_2 \\ \vdots \\ \end{array}\right) := 1 + \text{size}(T_1) + \text{size}(T_2)$$

- height(•) := 0
- height (T_1) := 1 + max{height(T_1), height(T_2)}

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

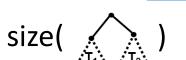
- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$, and $2^{0+1}-1=2^1-1=1$ so $P(\bullet)$ is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., $size(T_k) \le 2^{height(T_k) + 1} 1$ for k = 1, 2
- 4. Inductive Step: Goal: Prove P().

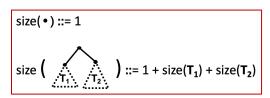
Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$, and $2^{0+1}-1=2^1-1=1$ so $P(\bullet)$ is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., $size(T_k) \le 2^{height(T_k) + 1} 1$ for k = 1, 2

Goal: Prove P(🔬).

4. Inductive Step:





$$\label{eq:height} \begin{aligned} \text{height(} \bullet \text{)} &::= 0 \\ \text{height(} \underbrace{\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \end{array} \begin{array}{c}$$

$$:= 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \leq 2^{\text{height}(\sqrt{T_2}) + 1} - 1$$

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$, and $2^{0+1}-1=2^1-1=1$ so $P(\bullet)$ is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., $size(T_k) \le 2^{height(T_k) + 1} 1$ for k = 1, 2
- 4. Inductive Step: Goal: Prove P(\bigcirc).

 By def, size(\bigcirc) =1+size(\top 1)+size(\top 2) $\leq 1+2^{\text{height}(\top} 1)+1-1+2^{\text{height}(\top} 2)+1-1$ by IH for \top 1 and \top 2 $= 2^{\text{height}(\top} 1)+1+2^{\text{height}(\top} 2)+1-1$ $\leq 2 \cdot \max(2^{\text{height}(\top} 1)+1,2^{\text{height}(\top} 2)+1)-1$ $= 2(2^{\text{max}(\text{height}(\top} 1),\text{height}(\top} 2))+1)-1$ $= 2(2^{\text{height}(\top} 1),\text{height}(\top} 2))+1-1$

which is what we wanted to show.

5. So, the P(T) is true for all rooted binary trees by structural induction.

Strings

An alphabet ∑ is any finite set of characters

- The set Σ* of strings over the alphabet Σ
 - example: {0,1}* is the set of binary strings
 0, 1, 00, 01, 10, 11, 000, 001, ... and ""

- Σ* is defined recursively by
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string, i.e., "")
 - Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Palindromes

Palindromes are strings that are the same when read backwards and forwards

Basis:

 ε is a palindrome any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome, then apa is a palindrome for every $a \in \Sigma$

Functions on Recursively Defined Sets (on Σ^*)

Length:

 $len(\varepsilon) := 0$ len(wa) := len(w) + 1 for $w \in \Sigma^*$, $a \in \Sigma$

Concatenation:

 $x \bullet \varepsilon := x \text{ for } x \in \Sigma^*$ $x \bullet wa := (x \bullet w)a \text{ for } x \in \Sigma^*, a \in \Sigma$

Reversal:

 $\varepsilon^R := \varepsilon$ (wa)^R := a • w^R for w $\in \Sigma^*$, a $\in \Sigma$

Number of c's in a string:

 $\#_c(\epsilon) := 0$ $\#_c(wc) := \#_c(w) + 1 \text{ for } w \in \Sigma^*$ $\#_c(wa) := \#_c(w) \text{ for } w \in \Sigma^*, a \in \Sigma, a \neq c$

separate cases for c vs a ≠ c

Claim: len(x•y) = len(x) + len(y) for all $x,y \in \Sigma^*$

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \cdot w) = len(x) + len(w)$ for all x

Claim: len(x•y) = len(x) + len(y) for all x,y $\in \Sigma^*$

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in W$ e prove P(y) for all $y \in \Sigma^*$ by structural indu

Does this look familiar?

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \cdot w) = len(x) + len(w)$ for all $x \cdot w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$ and $x \in \Sigma^*$. Then $len(x \cdot wa) = len((x \cdot w)a)$ by def of \bullet

= $len(x \cdot w) + 1$ by def of len

= len(x)+len(w)+1 by I.H.

= len(x)+len(wa) by def of len

Therefore, len(x•wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \cdot y) = len(x) + len(y)$ for all $x,y \in \Sigma^*$

Theoretical Computer Science

Languages: Sets of Strings

- Subsets of strings are called languages
- Examples:
 - $-\Sigma^*$ = All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don't have a 0 after a 1
 - Binary strings with an equal # of 0's and 1's
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences

Foreword on Intro to Theory C.S.

- Look at different ways of defining languages
- See which are more expressive than others
 - i.e., which can define more languages
- Later: connect ways of defining languages to different types of (restricted) computers
 - computers capable of recognizing those languages
 i.e., distinguishing strings in the language from not
- Consequence: computers that recognize more expressive languages are more powerful

Regular Expressions

Regular expressions over Σ

Basis:

```
\epsilon is a regular expression (could also include \varnothing) \alpha is a regular expression for any \alpha \in \Sigma
```

Recursive step:

```
If A and B are regular expressions, then so are:
```

```
A \cup B
AB
```

A*

Each Regular Expression is a "pattern"

- ε matches only the empty string
- a matches only the one-character string a
- A ∪ B matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another ($\varepsilon \cup A \cup AA \cup AAA \cup ...$)

Definition of the *language* matched by a regular expression

001*

0*1*

```
001*
```

```
{00, 001, 0011, 00111, ...}
```

0*1*

Any number of 0's followed by any number of 1's

$$(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$$

$$(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$$

{0000, 0010, 1000, 1010}

All binary strings

All binary strings that contain 0110

All binary strings that contain 0110

$$(0 \cup 1)* 0110 (0 \cup 1)*$$

All binary strings that contain 0110

$$(0 \cup 1)* 0110 (0 \cup 1)*$$

 All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

All binary strings that contain 0110

$$(0 \cup 1)* 0110 (0 \cup 1)*$$

 All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

$$(00 \cup 11)*(01010 \cup 10001)(0 \cup 1)*$$

Regular Expressions in Practice

- Used to define the tokens of a programming language
 - legal variable names, keywords, etc.
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

```
Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
boolean b = m.matches();
   [01] a 0 or a 1 ^ start of string $ end of string
   [0-9] any single digit \. period \, comma \- minus
         any single character
   ab a followed by b
                             (AB)
   (a|b) a or b
                         (\mathsf{A} \cup \mathsf{B})
   a? zero or one of a (A \cup \varepsilon)
                             A*
   a* zero or more of a
   a+ one or more of a AA*
e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
      General form of decimal number e.g. 9.12 or -9,8 (Europe)
```

All binary strings that have an even # of 1's

All binary strings that have an even # of 1's

All binary strings that have an even # of 1's

All binary strings that don't contain 101

All binary strings that have an even # of 1's

All binary strings that don't contain 101

e.g., **0*** (**1**
$$\cup$$
 000*)* **0***

at least two 0s between 1s

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
 - Palindromes
 - Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
 - Matched parentheses
 - Properly formed arithmetic expressions
 - etc.

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 - A finite set V of variables that can be replaced
 - Alphabet ∑ of terminal symbols that can't be replaced
 - One variable, usually S, is called the start symbol
- The substitution rules involving a variable A, written

$$A \rightarrow W_1 \mid W_2 \mid \cdots \mid W_k$$

where each w_i is a string of variables and terminals

- that is, $w_i \in (V \cup \Sigma)^*$

How CFGs generate strings

- Begin with start symbol S
- If there is some variable A in the current string you can replace it by one of the w's in the rules for A
 - $-A \rightarrow W_1 \mid W_2 \mid \cdots \mid W_k$
 - Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner (after a finite number of steps)

Example: $S \to 0S0 | 1S1 | 0 | 1 | \epsilon$

Example: $S \to 0S0 | 1S1 | 0 | 1 | \epsilon$

The set of all binary palindromes

Example: $S \to 0S0 | 1S1 | 0 | 1 | \epsilon$

The set of all binary palindromes

Example: $S \rightarrow 0S \mid S1 \mid \epsilon$

Example: $S \to 0S0 | 1S1 | 0 | 1 | \epsilon$

The set of all binary palindromes

Example: $S \rightarrow 0S \mid S1 \mid \epsilon$

0*1*