CSE 311: Foundations of Computing

Lecture 18: Strings and Regular Expressions

Last time: Rooted Binary Trees

- Basis:
- is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

- size(•) := 1
- height(•) := 0

Claim: For every rooted binary tree $\mathrm{T}, \operatorname{size}(\mathrm{T}) \leq 2^{\text {height }(\mathrm{T})+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: size $(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees T_{1} and T_{2}, i.e., size $\left(T_{k}\right) \leq 2^{\text {height }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:
Goal: Prove $P(\widehat{A})$.

Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees T_{1} and T_{2}, i.e., size $\left(T_{k}\right) \leq 2^{\text {height }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:
Goal: Prove $P(\widehat{A})$.
```
size(•) ::= 1
size({
```

```
height(•) ::= 0
height (~
< 2height( \
```

Claim: For every rooted binary tree $\mathrm{T}, \operatorname{size}(\mathrm{T}) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees T_{1} and T_{2}, i.e., size $\left(T_{k}\right) \leq 2^{\text {height }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:

By def, size $(\widehat{\text { and }})=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$

$$
\leq 1+2^{\text {height }\left(\mathbf{T}_{1}\right)+1}-1+2^{\text {height }\left(T_{\mathbf{2}}\right)+1}-1
$$

by IH for T_{1} and T_{2}
$=2^{\text {height }\left(T_{1}\right)+1}+2^{\text {height }\left(T_{2}\right)+1}-1$
$\leq 2 \cdot \max \left(2^{\text {height }}\left(\mathrm{T}_{1}\right)+1,2^{\text {height }}\left(\mathrm{T}_{2}\right)+1\right)-1$
$=2\left(2^{\max (h e i g h t}\left(\mathbf{T}_{1}\right)\right.$, $\left.\left.\operatorname{height}\left(\mathbf{T}_{2}\right)\right)+1\right)-1$
$=2\left(2^{\text {height }(A \lambda)}\right)-1=2^{\text {height }(A \lambda)+1}-1$
which is what we wanted to show.
5. So, the $P(T)$ is true for all rooted binary trees by structural induction.

Strings

- An alphabet Σ is any finite set of characters
- The set Σ^{*} of strings over the alphabet Σ
- example: $\{0,1\}^{*}$ is the set of binary strings

$$
0,1,00,01,10,11,000,001, \ldots \quad \text { and "" }
$$

- Σ^{*} is defined recursively by
- Basis: $\varepsilon \in \Sigma^{*}$ (ε is the empty string, i.e., "")
- Recursive: if $w \in \Sigma^{*}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Palindromes

Palindromes are strings that are the same when read backwards and forwards

Basis:
ε is a palindrome
any $a \in \Sigma$ is a palindrome

Recursive step:
If p is a palindrome,
then $a p a$ is a palindrome for every $a \in \Sigma$

Functions on Recursively Defined Sets (on Σ^{*})

Length:

$$
\begin{aligned}
& \operatorname{len}(\varepsilon):=0 \\
& \operatorname{len}(w a):=\operatorname{len}(w)+1 \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Concatenation:

$$
\begin{aligned}
& x \bullet \varepsilon:=x \text { for } x \in \Sigma^{*} \\
& x \bullet w a:=(x \bullet w) \text { for } x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}:=\varepsilon \\
& (w a)^{R}:=a \cdot w^{R} \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Number of c's in a string:

$$
\begin{aligned}
& \#_{\mathrm{c}}(\varepsilon):=0 \\
& \#_{\mathrm{c}}(\mathrm{wc}):=\#_{\mathrm{c}}(\mathrm{w})+1 \text { for } w \in \Sigma^{*} \\
& \#_{\mathrm{c}}(\mathrm{wa}):=\#_{\mathrm{c}}(\mathrm{w}) \text { for } \mathrm{w} \in \Sigma^{*}, \mathrm{a} \in \Sigma, \mathrm{a} \neq \mathrm{c}
\end{aligned}
$$

separate cases for

$$
c \text { vs } a \neq c
$$

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+$ len (y) for all $x \in \Sigma^{* "}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \bullet \varepsilon)=\operatorname{len}(x)=$ len $(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^{*}$, i.e., len $(x \bullet w)=\operatorname{len}(x)+\operatorname{len}(w)$ for all x

Claim: $\operatorname{len}(x \bullet y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in$ We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural indu

Does this look

 familiar?Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \bullet \varepsilon)=\operatorname{len}(x)=$ len $(x)+\operatorname{len}(\varepsilon)$ since $\operatorname{len}(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds. Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$ Let $a \in \Sigma$ and $x \in \Sigma^{*}$. Then len $(x \bullet w a)=\operatorname{len}((x \bullet w) a) \quad$ by def of \bullet
$=\operatorname{len}(x \cdot w)+1 \quad$ by def of len
$=\operatorname{len}(x)+\operatorname{len}(w)+1$ by I.H.
$=\operatorname{len}(x)+\operatorname{len}(w a) \quad$ by def of len
Therefore, len $(x \bullet w a)=\operatorname{len}(x)+\operatorname{len}(w a)$ for all $x \in \Sigma^{*}$, so $P(w a)$ is true. So, by induction len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Theoretical Computer Science

Languages: Sets of Strings

- Subsets of strings are called languages
- Examples:
$-\Sigma^{*}=$ All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Binary strings with an equal \# of 0's and 1's
- Legal variable names in Java/C/C++
- Syntactically correct Java/C/C++ programs
- Valid English sentences

Foreword on Intro to Theory C.S.

- Look at different ways of defining languages
- See which are more expressive than others - i.e., which can define more languages
- Later: connect ways of defining languages to different types of (restricted) computers
- computers capable of recognizing those languages i.e., distinguishing strings in the language from not
- Consequence: computers that recognize more expressive languages are more powerful

Regular Expressions

Regular expressions over Σ

- Basis:
ε is a regular expression
(could also include \varnothing)
a is a regular expression for any $a \in \Sigma$
- Recursive step:

If A and B are regular expressions, then so are:
$A \cup B$
AB
A*

Each Regular Expression is a "pattern"

ε matches only the empty string
a matches only the one-character string a
$\mathbf{A} \cup \mathbf{B}$ matches all strings that either \mathbf{A} matches or B matches (or both)
AB matches all strings that have a first part that \mathbf{A} matches followed by a second part that B matches

A* matches all strings that have any number of strings (even 0) that A matches, one after another $(\varepsilon \cup A \cup A A \cup A A A \cup \ldots)$

Examples

001*

0*1*

Examples

001*
$\{00,001,0011,00111, \ldots\}$

0*1*

Any number of 0's followed by any number of 1's

Examples

$(0 \cup 1) 0(0 \cup 1) 0$
(0*1*)*

Examples

$(0 \cup 1) 0(0 \cup 1) 0$
$\{0000,0010,1000,1010\}$
$(0 * 1 *) *$

All binary strings

Examples

- All binary strings that contain 0110

Examples

- All binary strings that contain 0110

$$
(0 \cup 1) * 0110(0 \cup 1)^{*}
$$

Examples

- All binary strings that contain 0110

$$
(0 \cup 1) * 0110(0 \cup 1) *
$$

- All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

Examples

- All binary strings that contain 0110

$$
(0 \cup 1) * 0110(0 \cup 1)^{*}
$$

- All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

$$
(00 \cup 11) *(01010 \cup 10001)(0 \cup 1) *
$$

Regular Expressions in Practice

- Used to define the tokens of a programming language
- legal variable names, keywords, etc.
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
boolean b = m.matches();
[01] a 0 or a 1 ^ start of string \$ end of string
[0-9] any single digit \. period
, comma \-minus
. any single character
ab a followed by b
(a|b) a orb
a ? zero or one of a
a* zero or more of a
at one or more of a AA*
(AB)
$(A \cup B)$
$(A \cup \varepsilon)$
A*

- e.g. ^[\-+]?[0-9]*(\. $\$,) ? [0-9]+\$

General form of decimal number e.g. 9.12 or $-9,8$ (Europe)

Examples

- All binary strings that have an even \# of 1's

Examples

- All binary strings that have an even \# of 1's
e.g., 0* (10*10*)*

Examples

- All binary strings that have an even \# of 1's
e.g., 0* (10*10*)*
- All binary strings that don't contain 101

Examples

- All binary strings that have an even \# of 1's

$$
\text { e.g., } 0 *(10 * 10 *) *
$$

- All binary strings that don't contain 101

$$
\text { e.g., } 0 *\left(1 \cup 000^{*}\right) * 0 *
$$

at least two 0s between 1s

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
- Palindromes
- Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
- Matched parentheses
- Properly formed arithmetic expressions
- etc.

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set V of variables that can be replaced
- Alphabet Σ of terminal symbols that can't be replaced
- One variable, usually S , is called the start symbol
- The substitution rules involving a variable A , written

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals

- that is, $w_{i} \in(V \cup \Sigma)^{*}$

How CFGs generate strings

- Begin with start symbol S
- If there is some variable A in the current string you can replace it by one of the w's in the rules for A
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $\quad x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner (after a finite number of steps)

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O \|} \mathbf{1 S 1 | 0 | 1 | \varepsilon}$

Example Context-Free Grammars

Example:
 $\mathbf{S} \rightarrow \mathbf{0 S O \|} 1 \mathrm{~S} 1|0| 1 \mid \varepsilon$

The set of all binary palindromes

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O \|} \mathbf{1 S 1 | 0 | 1 | \varepsilon}$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S 1}| \varepsilon$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O \|} \mathbf{1 S 1 | 0 | 1 | \varepsilon}$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S 1}| \varepsilon$

0*1*

