WHENEVER I LEARN A NEW SKILL I CONCOCT ELABORATE FANTASY SCENARIOS WHERE IT LETS ME SAVE THE DAY.

OH NO! THE KILLER MUST HAVE FOLLOWED HER ON VACATION!

BUT TO FIND THEM WE'D HAVE TO SEARCH THROUGH 200 MB OF EMAILS LOOKING FOR SOMETHING FORMATTED LIKE AN ADDRESS!

IT’S HOPELESS!

EVERYBODY STAND BACK.

I KNOW REGULAR EXPRESSIONS...

EXPLOSION TRAP!
Last time: Rooted Binary Trees

- **Basis:**
 - is a rooted binary tree

- **Recursive step:**

 If T_1 and T_2 are rooted binary trees,

 then also is a rooted binary tree.
Defining Functions on Rooted Binary Trees

- \(\text{size}(\bullet) := 1 \)

- \(\text{size}\left(\begin{array}{c} T_1 \\ \hline \end{array} , \begin{array}{c} T_2 \end{array} \right) := 1 + \text{size}(T_1) + \text{size}(T_2) \)

- \(\text{height}(\bullet) := 0 \)

- \(\text{height}\left(\begin{array}{c} T_1 \\ \hline \end{array} , \begin{array}{c} T_2 \end{array} \right) := 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \)
Claim: For every rooted binary tree \(T \), \(\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1 \)

1. Let \(P(T) \) be “\(\text{size}(T) \leq 2^{\text{height}(T)}+1-1 \)”\). We prove \(P(T) \) for all rooted binary trees \(T \) by structural induction.

2. Base Case: \(\text{size}(\bullet)=1 \), \(\text{height}(\bullet)=0 \), and \(2^{0+1}-1=2^1-1=1 \) so \(P(\bullet) \) is true.

3. Inductive Hypothesis: Suppose that \(P(T_1) \) and \(P(T_2) \) are true for some rooted binary trees \(T_1 \) and \(T_2 \), i.e., \(\text{size}(T_k) \leq 2^{\text{height}(T_k)} + 1 - 1 \) for \(k=1,2 \)

4. Inductive Step: \(\text{Goal: Prove } P(T) \) \(\).
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 – 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$, and $2^{0+1} – 1 = 2^{1} – 1 = 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2, i.e., $\text{size}(T_k) \leq 2^{\text{height}(T_k)} + 1 – 1$ for $k=1,2$

4. Inductive Step: Goal: Prove $P(\text{rooted binary tree})$.

\[
\text{size}(\text{rooted binary tree}) \leq 2^{\text{height}(\text{rooted binary tree})} + 1 - 1
\]
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)+1}-1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet)=1$, $\text{height}(\bullet)=0$, and $2^{0+1}-1=2^1-1=1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2, i.e., $\text{size}(T_k) \leq 2^{\text{height}(T_k)+1} - 1$ for $k=1,2$

 By def, $\text{size}(\overline{\overline{T}}) = 1 + \text{size}(T_1) + \text{size}(T_2)$

 \[
 = 1 + 2^{\text{height}(T_1)+1}-1 + 2^{\text{height}(T_2)+1}-1 \quad \text{by IH for } T_1 \text{ and } T_2
 \]

 \[
 = 2^{\text{height}(T_1)+1} + 2^{\text{height}(T_2)+1}-1
 \]

 \[
 \leq 2 \cdot \max(2^{\text{height}(T_1)+1}, 2^{\text{height}(T_2)+1}) - 1
 \]

 \[
 = 2(2^{\max(\text{height}(T_1), \text{height}(T_2))+1}) - 1
 \]

 \[
 = 2(2^{\text{height}(...)}) - 1 = 2^{\text{height}(...)+1} - 1
 \]

 which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted binary trees by structural induction.
Strings

• An alphabet Σ is any finite set of characters

• The set Σ^* of strings over the alphabet Σ
 – example: $\{0,1\}^*$ is the set of binary strings
 $0, 1, 00, 01, 10, 11, 000, 001, ...$ and “”

• Σ^* is defined recursively by
 – Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string, i.e., “”)
 – Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$
Palindromes

Palindromes are strings that are the same when read backwards and forwards.

Basis:

- ε is a palindrome
- any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome, then apa is a palindrome for every $a \in \Sigma$.
Functions on Recursively Defined Sets (on Σ^*)

Length:
\[
\text{len}(\varepsilon) := 0
\]
\[
\text{len}(wa) := \text{len}(w) + 1 \text{ for } w \in \Sigma^*, a \in \Sigma
\]

Concatenation:
\[
x \cdot \varepsilon := x \text{ for } x \in \Sigma^*
\]
\[
x \cdot wa := (x \cdot w)a \text{ for } x \in \Sigma^*, a \in \Sigma
\]

Reversal:
\[
\varepsilon^R := \varepsilon
\]
\[
(wa)^R := a \cdot w^R \text{ for } w \in \Sigma^*, a \in \Sigma
\]

Number of c's in a string:
\[
\#_c(\varepsilon) := 0
\]
\[
\#_c(wc) := \#_c(w) + 1 \text{ for } w \in \Sigma^*
\]
\[
\#_c(wa) := \#_c(w) \text{ for } w \in \Sigma^*, a \in \Sigma, a \neq c
\]

separate cases for c vs $a \neq c$
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case \((y = \varepsilon)\): Let \(x \in \Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Since \(x \) was arbitrary, \(P(\varepsilon) \) holds.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \), i.e., \(\text{len}(x \cdot w) = \text{len}(x) + \text{len}(w) \) for all \(x \)
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case (\(y = \varepsilon \)): Let \(x \in \Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Since \(x \) was arbitrary, \(P(\varepsilon) \) holds.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \), i.e., \(\text{len}(x \cdot w) = \text{len}(x) + \text{len}(w) \) for all \(x \in \Sigma^* \).

Inductive Step: Goal: Show that \(P(wa) \) is true for every \(a \in \Sigma \)

Let an \(a \in \Sigma \) and \(x \in \Sigma^* \). Then \(\text{len}(x \cdot wa) = \text{len}((x \cdot w)a) \) by def of \(\cdot \)

\[
= \text{len}(x \cdot w) + 1 \quad \text{by def of len} \\
= \text{len}(x) + \text{len}(w) + 1 \quad \text{by I.H.} \\
= \text{len}(x) + \text{len}(wa) \quad \text{by def of len}
\]

Therefore, \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), so \(P(wa) \) is true.

So, by induction \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \).
Theoretical Computer Science
Languages: Sets of Strings

• Subsets of strings are called languages

• Examples:
 – Σ^* = All strings over alphabet Σ
 – Palindromes over Σ
 – Binary strings that don’t have a 0 after a 1
 – Binary strings with an equal # of 0’s and 1’s
 – Legal variable names in Java/C/C++
 – Syntactically correct Java/C/C++ programs
 – Valid English sentences
Foreword on Intro to Theory C.S.

• Look at different ways of defining languages
• See which are more expressive than others
 – i.e., which can define more languages

• Later: connect ways of defining languages to different types of (restricted) computers
 – computers capable of recognizing those languages
 i.e., distinguishing strings in the language from not

• Consequence: computers that recognize more expressive languages are more powerful
Regular Expressions

Regular expressions over Σ

• Basis:
 - ε is a regular expression (could also include \emptyset)
 - a is a regular expression for any $a \in \Sigma$

• Recursive step:
 If A and B are regular expressions, then so are:
 - $A \cup B$
 - AB
 - A^*
Each Regular Expression is a “pattern”

\(\varepsilon\) matches only the empty string

\(a\) matches only the one-character string \(a\)

\(A \cup B\) matches all strings that either \(A\) matches or \(B\) matches (or both)

\(AB\) matches all strings that have a first part that \(A\) matches followed by a second part that \(B\) matches

\(A^*\) matches all strings that have any number of strings (even 0) that \(A\) matches, one after another (\(\varepsilon \cup A \cup AA \cup AAA \cup \ldots\))

Definition of the language matched by a regular expression
Examples

001 *

0*1 *
Examples

001*

\{00, 001, 0011, 00111, ...\}

0*1*

Any number of 0’s followed by any number of 1’s
Examples

\[(0 \cup 1) \ 0 \ (0 \cup 1) \ 0\]

\[(0*1*)*\]
Examples

\[(0 \cup 1) \ 0 \ (0 \cup 1) \ 0\]

\{0000, 0010, 1000, 1010\}

\[(0*1*)^*\]

All binary strings
Examples

• All binary strings that contain 0110
Examples

• All binary strings that contain 0110

\((0 \cup 1)^* \, 0110 \, (0 \cup 1)^*\)
Examples

- All binary strings that contain 0110

\[(0 \cup 1)^* 0110 (0 \cup 1)^*\]

- All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001
Examples

• All binary strings that contain 0110

 \((0 \cup 1)^* \ 0110 \ (0 \cup 1)^*\)

• All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

 \((00 \cup 11)^* \ (01010 \cup 10001) \ (0 \cup 1)^*\)
Regular Expressions in Practice

• Used to define the tokens of a programming language
 – legal variable names, keywords, etc.

• Used in grep, a program that does pattern matching searches in UNIX/LINUX

• We can use regular expressions in programs to process strings!
Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
boolean b = m.matches();

- [01] a 0 or a 1 ^ start of string $ end of string
- [0-9] any single digit \. period \, comma \- minus
- . any single character
- ab a followed by b (AB)
- (a|b) a or b (A ∪ B)
- a? zero or one of a (A ∪ ε)
- a* zero or more of a A*
- a+ one or more of a AA*

- e.g. ^[\-+]?[0-9]*(\.|\)|,)?[0-9]+$
 General form of decimal number e.g. 9.12 or -9,8 (Europe)
Examples

- All binary strings that have an even number of 1's
Examples

- All binary strings that have an even # of 1’s

e.g., $0^* (10^*10^*)^*$
Examples

• All binary strings that have an even # of 1’s
 e.g., $0^* (10^*10^*)^*$

• All binary strings that don’t contain 101
Examples

- All binary strings that have an even # of 1’s

e.g., \(0^* (10^*10^*)^* \)

- All binary strings that don’t contain 101

e.g., \(0^* (1 \cup 000^*)^* 0^* \)

 at least two 0s between 1s
Limitations of Regular Expressions

• Not all languages can be specified by regular expressions

• Even some easy things like
 – Palindromes
 – Strings with equal number of 0’s and 1’s

• But also more complicated structures in programming languages
 – Matched parentheses
 – Properly formed arithmetic expressions
 – etc.
Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 – A finite set \(V \) of *variables* that can be replaced
 – Alphabet \(\Sigma \) of *terminal symbols* that can’t be replaced
 – One variable, usually \(S \), is called the *start symbol*

• The substitution rules involving a variable \(A \), written
 \[
 A \rightarrow w_1 \mid w_2 \mid \cdots \mid w_k
 \]
 where each \(w_i \) is a string of variables and terminals
 – that is, \(w_i \in (V \cup \Sigma)^* \)
How CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you can replace it by one of the w’s in the rules for A

 – $A \rightarrow w_1 \mid w_2 \mid \cdots \mid w_k$

 – Write this as $xAy \Rightarrow xwy$

 – Repeat until no variables left

• The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner (after a finite number of steps)
Example Context-Free Grammars

Example: \(S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \)
Example Context-Free Grammars

Example: \[S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \]

The set of all binary palindromes
Example Context-Free Grammars

Example:

\[S \rightarrow 0S0 | 1S1 | 0 | 1 | \epsilon \]

The set of all binary palindromes

Example:

\[S \rightarrow 0S | S1 | \epsilon \]
Example Context-Free Grammars

Example: \(S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \)

The set of all binary palindromes

Example: \(S \rightarrow 0S \mid S1 \mid \varepsilon \)

\(0^*1^*\)