CSE 311: Foundations of Computing

Lecture 18: Strings and Regular Expressions

Last time: Rooted Binary Trees

- Basis: - is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

- size(•) := 1

- height(•) := 0
- height (

Claim: For every rooted binary tree $\mathrm{T}, \operatorname{size}(\mathrm{T}) \leq 2^{\text {height(T)+1 }}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\bullet)=1$, height $(\bullet)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees T_{1} and T_{2}, i.e., size $\left(T_{k}\right) \leq 2^{\text {height }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:

Goal: Prove $P(A, A)$.

Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees T_{1} and T_{2}, ie., size $\left(T_{i k}\right) \leq 2^{\text {height }\left(T_{i}\right)+1}-1$ for $k=1,2$
4. Inductive Step:

Claim: For every rooted binary tree \mathbf{T}, size($\mathbf{T}) \leq 2^{\text {height(T) }+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees T_{1} and T_{2}, i.e., size $\left(T_{k}\right) \leq 2^{\text {height }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:
```
Goal: Prove P( , , , ).
\[
\leq 1+2^{\text {height }\left(T_{1}\right)+1}-1+2^{\text {height }\left(T_{2}\right)+1}-1
\]
```

By def, $\operatorname{size}(\overbrace{1})=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$

$$
\text { by } \mathrm{IH} \text { for } \mathrm{T}_{1} \text { and } \mathrm{T}_{2}
$$

$$
=2^{\text {height }\left(T_{1}\right)+1}+2^{\text {height }\left(T_{2}\right)+1}-1
$$

$$
\leq 2 \cdot \max \left(2^{\text {height }\left(T_{1}\right)+1,2^{\text {height }}\left(T_{2}\right)+1}\right)-1
$$

$$
\leq 2\left(2^{\max \left(\operatorname{height}\left(T_{1}\right), \operatorname{height}\left(T_{2}\right)\right)+1}\right)-1
$$

which is what we wanted to show.
5. So, the $P(T)$ is true for all rooted binary trees by structural induction.

Strings

- An alphabet Σ is any finite set of characters
So,ll, ASCE unicode
- The set Σ^{*} of strings over the alphabet Σ
- example: $\{0,1\}^{*}$ is the set of binary strings $0,1,00,01,10,11,000,001, \ldots$

- Σ^{*} is defined recursively by
- Basis: $\varepsilon \in \Sigma^{*}$ (ε is the empty string, i.e., "")
- Recursive: if $w \in \Sigma^{*}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Palindromes

og arotora

Palindromes are strings that are the same when level read backwards and forwards

```
\varepsilon, a for }a\inE\mathrm{ deed
```

Basis:
ε is a palindrome

$$
\varepsilon=\{0,1\}
$$

any $a \in \Sigma$ is a palindrome

Recursive step:
If p is a palindrome, then apa is a palindrome for every $a \in \Sigma$

Functions on Recursively Defined Sets (on Σ^{*})

Length:

$$
\begin{aligned}
& \operatorname{len}(\underline{\varepsilon}):=0 \\
& \operatorname{len}(\underline{w a}):=\operatorname{len}(w)+\underline{1} \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Concatenation:

$$
\begin{aligned}
& x \bullet \varepsilon:=x \text { for } x \in \Sigma^{*} \\
& x \bullet w a:=(x \bullet w) \text { for } x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}:=\varepsilon \\
& (\mathrm{wa})^{\mathrm{R}}:=\mathrm{a} \bullet \mathrm{w}^{\mathrm{R}} \text { for } \mathrm{w} \in \Sigma^{*}, \mathrm{a} \in \Sigma
\end{aligned}
$$

Number of c's in a string: $\quad C \in \sum$ '

$$
\begin{array}{lc}
\#_{c}(\varepsilon):=0 & \text { separate cases for } \\
\#_{c}(w c):=\#_{c}(w)+1 \text { for } w \in \Sigma^{*} & \text { c vs } a \neq c \\
\#_{c}(w a):=\#_{c}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma, a \neq c &
\end{array}
$$

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \bullet \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{* "}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, $\operatorname{len}(x \bullet \varepsilon)=\operatorname{len}(\underline{x})=$ len $(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Since x was arbitrary, $\mathrm{P}(\varepsilon)$ holds.
Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^{*}$, i.e., len $(x \cdot w)=\operatorname{len}(x)+\operatorname{len}(w)$ for all x

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \circ y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in$ We prove $\mathrm{P}(\mathrm{y})$ for all $\mathrm{y} \in \Sigma^{*}$ by structural indu

Does this look familiar?

Base Case ($y=\varepsilon$): Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \cdot \varepsilon)=\operatorname{len}(x)=$ len $(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.
Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^{*}$, i.e., len $(x \cdot w)=\operatorname{len}(x)+\operatorname{len}(w)$ for all x Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$
Let $a \in \Sigma$ and $x \in \Sigma^{*}$. Then len $(x \bullet w a)=\operatorname{len}((x \bullet w) a) \quad$ by def of \bullet

$$
\begin{aligned}
& =\operatorname{en}(x \cdot w)+1 \quad \text { by def of len } \\
& =\operatorname{len}(x)+\operatorname{len}(w)+1 \text { by I.H. } \\
& =\operatorname{len}(x)+\operatorname{len}(w a) \quad \text { by def of len }
\end{aligned}
$$

Therefore, len $(x \cdot w a)=\operatorname{len}(x)+\operatorname{len}(w a)$ for all $x \in \overline{\Sigma^{*}, \text { so }} P(w a)$ is true.
So, by induction len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Theoretical Computer Science

Languages: Sets of Strings

- Subsets of strings are called languages
- Examples:
$-\Sigma^{*}=$ All strings over alphabet Σ
- Palindromes over $\underset{\underline{\Sigma}}{ }$
- Binary strings that don't have a 0 after a 1
- Binary strings with an equal \# of 0's and 1's
- Legal variable names in Java/C/C++
- Syntactically correct Java/C/C++ programs
- Valid English sentences

Foreword on Intro to Theory C.S.

- Look at different ways of defining languages
- See which are more expressive than others
- i.e., which can define more languages
- Later: connect ways of defining languages to different types of (restricted) computers
- computers capable of recognizing those languages i.e., distinguishing strings in the language from not
- Consequence: computers that recognize more expressive languages are more powerful

Regular Expressions

Regular expressions over Σ

- Basis:
ε is a regular expression (could also include \varnothing)
a is a regular expression for any $a \in \Sigma$
- Recursive step:

If A and B are regular expressions, then so are:
$A \cup B$
AB
A*

Each Regular Expression is a "pattern"

ε matches only the empty string

a matches only the one-character string \underline{a}
$\mathbf{A} \cup B$ matches all strings that either \mathbf{A} matches or B matches (or both)
$A B$ matches all strings that have a first part that A matches followed by a second part that B matches
A* matches all strings that have any number of strings (even 0) that A matches, one after another $(\varepsilon \cup \mathbf{A} \cup \mathbf{A A} \cup \mathbf{A A A} \cup \ldots$...)

Examples $x y z^{2}-\quad *$ hide cloper)
001* $\{00,001,0011,00111, \ldots\}$

$0 * 1 *$
E,0011,0111,111,0
all 0 's hetrue all $\left.\right|^{1}$ i,

Examples

001*

$\{00,001,0011,00111, \ldots\}$

0*1*

Any number of 0's followed by any number of 1's

Examples

$$
\begin{aligned}
& (0 \cup 1) 0(0 \cup 1) 0 \\
& \left\{\begin{array}{l}
000,0009,1000,0010\} \\
0000
\end{array}\right. \\
& (0 * 1 *)^{*}
\end{aligned}
$$

all pooselt bany tráy.

Examples

$(0 \cup 1) 0(0 \cup 1) 0$
$\{0000,0010,1000,1010\}$
(0*1*)*

All binary strings

Examples

- All binary strings that contain 0110

$$
(001)^{*} 0110(001)^{*}
$$

Examples

- All binary strings that contain 0110

$$
(0 \cup 1) * 0110(0 \cup 1) *
$$

Examples

- All binary strings that contain 0110

$$
(0 \cup 1)^{*} 0110(0 \cup 1)^{*}
$$

- All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

$$
(0001)^{*}(01010 \cup 1000)
$$

Examples

- All binary strings that contain 0110

$$
(0 \cup 1)^{*} 0110(0 \cup 1)^{*}
$$

- All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

$$
(00 \cup 11) *(01010 \cup 10001)(0 \cup 1) *
$$

Regular Expressions in Practice

- Used to define the tokens of a programming language
- legal variable names, keywords, etc.
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
boolean b = m.matches();
[01] a 0 or a $1 \wedge$ start of string $\$$ end of string
[0-9] any single digit \. period
, comma \-minus
. any single character
$a b \quad a$ followed by b
(a|b) a orb
a ? zero or one of a
a* zero or more of a
at one or more of a AA*

- e.g. ^[\-+]? [0-9]* (\.|
,) ? [0-9]+\$

General form of decimal number e.g. 9.12 or $-9,8$ (Europe)

Examples

- All binary strings that have an even \# of 1's

Examples

- All binary strings that have an even \# of 1's
e.g., 0* (10*10*)*

Examples

- All binary strings that have an even \# of 1's
e.g., 0* (10*10*)*
- All binary strings that don't contain 101

Examples

- All binary strings that have an even \# of 1's
e.g., 0* (10*10*)*
- All binary strings that don't contain 101

$$
\text { e.g., 0* }(1 \cup 000 *)^{*} 0 *
$$

at least two 0s between 1s

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
- Palindromes
- Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
- Matched parentheses
- Properly formed arithmetic expressions
- etc.

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set V of variables that can be replaced
- Alphabet Σ of terminal symbols that can't be replaced
- One variable, usually S , is called the start symbol
- The substitution rules involving a variable A , written

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals

- that is, $w_{i} \in(V \cup \Sigma)^{*}$

How CFGs generate strings

- Begin with start symbol S
- If there is some variable A in the current string you can replace it by one of the w's in the rules for A
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner (after a finite number of steps)

Example Context-Free Grammars

Example: $\quad S \rightarrow$ OS0 \| 1S1 \| $0|1| \varepsilon$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow$ OS0 | 1S1 | $0|1| \varepsilon$

The set of all binary palindromes

Example Context-Free Grammars

Example: $\quad S \rightarrow$ OS0 | 1S1 | $0|1| \varepsilon$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S 1}| \varepsilon$

Example Context-Free Grammars

Example: $\quad S \rightarrow$ OS0 | 1S1 | $0|1| \varepsilon$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S 1}| \varepsilon$

$$
0 * 1 *
$$

