Lecture 18: Strings and Regular Expressions
Last time: Rooted Binary Trees

• **Basis:**
 - is a rooted binary tree

• **Recursive step:**

If T_1 and T_2 are rooted binary trees,

then also is a rooted binary tree.
Defining Functions on Rooted Binary Trees

- \(\text{size}(\bullet) := 1 \)

- \(\text{size} \left(\begin{array}{c} T_1 \\ T_2 \end{array} \right) := 1 + \text{size}(T_1) + \text{size}(T_2) \)

- \(\text{height}(\bullet) := 0 \)

- \(\text{height} \left(\begin{array}{c} T_1 \\ T_2 \end{array} \right) := 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \)
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\cdot) = 1$, $\text{height}(\cdot) = 0$, and $2^{0+1} - 1 = 2^1 - 1 = 1$ so $P(\cdot)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2, i.e., $\text{size}(T_k) \leq 2^{\text{height}(T_k)} + 1 - 1$ for $k=1,2$

4. Inductive Step: **Goal:** Prove $P()$.
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$, and $2^{0+1} - 1 = 2^1 - 1 = 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2, i.e., $\text{size}(T_k) \leq 2^{\text{height}(T_k)} + 1 - 1$ for $k = 1, 2$.

4. Inductive Step: Goal: Prove $P(\text{Tree}).$

\[
\text{size}(\text{Tree}) = 1 + \text{size}(T_1) + \text{size}(T_2) \\
= 1 + 2^{\text{height}(T_1)} + 1 + 2^{\text{height}(T_2)} - 1 \\
\leq 1 + 2 \cdot \max(2^{\text{height}(T_1)}, 2^{\text{height}(T_2)}) - 1 \\
\leq 2 \cdot \max(2^{\text{height}(T_1)}, 2^{\text{height}(T_2)}) - 1 \\
= 2 \cdot 2^{\text{max}(\text{height}(T_1), \text{height}(T_2))} - 1 \\
\leq 2^{\text{height}(\text{Tree}) + 1} - 1
\]
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T) + 1} - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T) + 1} - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\cdot) = 1$, $\text{height}(\cdot) = 0$, and $2^{0+1} - 1 = 2^1 - 1 = 1$ so $P(\cdot)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2, i.e., $\text{size}(T_k) \leq 2^{\text{height}(T_k) + 1} - 1$ for $k=1,2$.

4. Inductive Step:
 Goal: Prove $P(\text{ } \text{ })$.
 By def, $\text{size}(\text{ } \text{ }) = 1 + \text{size}(T_1) + \text{size}(T_2)$
 \[\leq 1 + 2^{\text{height}(T_1) + 1} - 1 + 2^{\text{height}(T_2) + 1} - 1\]
 by IH for T_1 and T_2
 \[= 2^{\text{height}(T_1) + 1} + 2^{\text{height}(T_2) + 1} - 1\]
 \[\leq 2 \cdot \max(2^{\text{height}(T_1) + 1}, 2^{\text{height}(T_2) + 1}) - 1\]
 \[\leq 2(2^{\max(\text{height}(T_1), \text{height}(T_2)) + 1}) - 1\]
 \[\leq 2(2^{\text{height}(\text{ } \text{ })}) - 1 \leq 2^{\text{height}(\text{ } \text{ }) + 1} - 1\]
 which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted binary trees by structural induction.
Strings

- An alphabet Σ is any finite set of characters.
- The set Σ^* of strings over the alphabet Σ
 - example: $\{0,1\}^*$ is the set of binary strings $0, 1, 00, 01, 10, 11, 000, 001, \ldots$ and ""
- Σ^* is defined recursively by
 - **Basis:** $\varepsilon \in \Sigma^*$ (ε is the empty string, i.e., "")
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Strings
Palindromes

Palindromes are strings that are the same when read backwards and forwards

Basis:
- ε is a palindrome
- any $a \in \Sigma$ is a palindrome

Recursive step:
- If p is a palindrome,
- then apa is a palindrome for every $a \in \Sigma$
Functions on Recursively Defined Sets (on Σ^*)

Length:

\[
\begin{align*}
\text{len}(\varepsilon) & := 0 \\
\text{len}(wa) & := \text{len}(w) + 1 \quad \text{for } w \in \Sigma^*, \ a \in \Sigma
\end{align*}
\]

Concatenation:

\[
\begin{align*}
x \cdot \varepsilon & := x \quad \text{for } x \in \Sigma^* \\
x \cdot wa & := (x \cdot w)a \quad \text{for } x \in \Sigma^*, \ a \in \Sigma
\end{align*}
\]

Reversal:

\[
\begin{align*}
\varepsilon^R & := \varepsilon \\
(wa)^R & := a \cdot w^R \quad \text{for } w \in \Sigma^*, \ a \in \Sigma
\end{align*}
\]

Number of c’s in a string:

\[
\begin{align*}
\#_c(\varepsilon) & := 0 \\
\#_c(wc) & := \#_c(w) + 1 \quad \text{for } w \in \Sigma^* \\
\#_c(wa) & := \#_c(w) \quad \text{for } w \in \Sigma^*, \ a \in \Sigma, \ a \neq c
\end{align*}
\]

separate cases for c vs $a \neq c$
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.
We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case \((y = \varepsilon)\): Let \(x \in \Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Since \(x \) was arbitrary, \(P(\varepsilon) \) holds.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \), i.e., \(\text{len}(x \cdot w) = \text{len}(x) + \text{len}(w) \) for all \(x \)
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \).”

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case (\(y = \varepsilon \)): Let \(x \in \Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Since \(x \) was arbitrary, \(P(\varepsilon) \) holds.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \), i.e., \(\text{len}(x \cdot w) = \text{len}(x) + \text{len}(w) \) for all \(x \in \Sigma^* \).

Inductive Step: Goal: Show that \(P(wa) \) is true for every \(a \in \Sigma \)

Let \(a \in \Sigma \) and \(x \in \Sigma^* \). Then \(\text{len}(x \cdot wa) = \text{len}((x \cdot w)a) \) by def of \(\cdot \)

\[= \text{len}(x \cdot w) + 1 \] by def of \(\text{len} \)

\[= \text{len}(x) + \text{len}(w) + 1 \] by I.H.

\[= \text{len}(x) + \text{len}(wa) \] by def of \(\text{len} \)

Therefore, \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), so \(P(wa) \) is true.

So, by induction \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \).
Theoretical Computer Science
Languages: Sets of Strings

- Subsets of strings are called *languages*
- Examples:
 - Σ^* = All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don’t have a 0 after a 1
 - Binary strings with an equal # of 0’s and 1’s
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences
Foreword on Intro to Theory C.S.

• Look at different ways of defining languages
• See which are more expressive than others
 – i.e., which can define more languages
• Later: connect ways of defining languages to different types of (restricted) computers
 – computers capable of recognizing those languages
 i.e., distinguishing strings in the language from not
• Consequence: computers that recognize more expressive languages are more powerful
Regular Expressions

Regular expressions over Σ

- **Basis:**
 - ε is a regular expression (could also include \emptyset)
 - a is a regular expression for any $a \in \Sigma$

- **Recursive step:**
 - If A and B are regular expressions, then so are:
 - $A \cup B$
 - AB
 - A^*
Each Regular Expression is a “pattern”

- ε matches only the empty string

- a matches only the one-character string a

- $A \cup B$ matches all strings that either A matches or B matches (or both)

- AB matches all strings that have a first part that A matches followed by a second part that B matches

- A^* matches all strings that have any number of strings (even 0) that A matches, one after another ($\varepsilon \cup A \cup AA \cup AAA \cup \ldots$)

Definition of the language matched by a regular expression
Examples

\[x^2y^2 + \text{body (lores)} \]

001*

\[500, 001, 0011, 00111, \ldots \]

0*1*

3, 0011, 0111, 111, 0

all 0's before all 1's
Examples

\(001^*\)

\{00, 001, 0011, 00111, \ldots\}

\(0^*1^*\)

Any number of 0’s followed by any number of 1’s
Examples

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\((0*1*)^* \)

all possible binary strings
Examples

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\{0000, 0010, 1000, 1010\}

\((0*1*)^*\)

All binary strings
Examples

• All binary strings that contain 0110

$(001)^*0110(001)^*$
Examples

• All binary strings that contain 0110

$$(0 \cup 1)^* \ 0110 \ (0 \cup 1)^*$$
Examples

• All binary strings that contain 0110

\[(0 \cup 1)^* 0110 (0 \cup 1)^*\]

• All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

\[\left(0011\right)^* \left(01010 \cup 10001\right)\]
Examples

• All binary strings that contain 0110

\[(0 \cup 1)^* \ 0110 \ (0 \cup 1)^*\]

• All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

\[(00 \cup 11)^* \ (01010 \cup 10001) \ (0 \cup 1)^*\]
Regular Expressions in Practice

• Used to define the *tokens* of a programming language
 – legal variable names, keywords, etc.

• Used in *grep*, a program that does pattern matching searches in UNIX/LINUX

• We can use regular expressions in programs to process strings!
Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaaab");
boolean b = m.matches();

• [01] a 0 or a 1 ^ start of string $ end of string
• [0–9] any single digit \. period \, comma \− minus
• . any single character
• ab a followed by b (AB)
• (a|b) a or b (A ∪ B)
• a? zero or one of a (A ∪ ε)
• a* zero or more of a A*
• a+ one or more of a AA*

• e.g. ^[\-+]?[0–9]* (\.|/\,)?[0–9]+$
 General form of decimal number e.g. 9.12 or -9,8 (Europe)
Examples

- All binary strings that have an even # of 1’s
Examples

• All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*
Examples

• All binary strings that have an even # of 1’s

 e.g., 0* (10*10*)*

• All binary strings that don’t contain 101
Examples

• All binary strings that have an even # of 1’s

 e.g., $0^* (10^*10^*)^*$

• All binary strings that don’t contain 101

 e.g., $0^* (1 \cup 000^*)^* 0^*$

 at least two 0s between 1s
Limitations of Regular Expressions

• Not all languages can be specified by regular expressions

• Even some easy things like
 – Palindromes
 – Strings with equal number of 0’s and 1’s

• But also more complicated structures in programming languages
 – Matched parentheses
 – Properly formed arithmetic expressions
 – etc.
Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 – A finite set V of variables that can be replaced
 – Alphabet Σ of terminal symbols that can’t be replaced
 – One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written
 \[A \rightarrow w_1 \mid w_2 \mid \cdots \mid w_k \]
 where each w_i is a string of variables and terminals
 – that is, $w_i \in (V \cup \Sigma)^*$
How CFGs generate strings

- Begin with start symbol S

- If there is some variable A in the current string you can replace it by one of the w’s in the rules for A
 - $A \rightarrow w_1 | w_2 | \cdots | w_k$
 - Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left

- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner (after a finite number of steps)
Example Context-Free Grammars

Example: \[S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \]
Example Context-Free Grammars

Example: \[S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \]

The set of all binary palindromes
Example Context-Free Grammars

Example: \[S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \]

The set of all binary palindromes

Example: \[S \rightarrow 0S \mid S1 \mid \varepsilon \]
Example Context-Free Grammars

Example: \(S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon \)

The set of all binary palindromes

Example: \(S \rightarrow 0S \mid S1 \mid \varepsilon \)

\(0^*1^* \)