CSE 311.: Foundations of Computing

Lecture 18: Strings and Regular Expressions

OH NO! THE KILLER || BUT TD FIND THEM WED HAVE T0O SEARCH
WHENEVER T LEARN A | | MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
NEW SKILL T CoNCoCT | | HER ON VACATION ! sm:rmr)s FORMATTED LIKE AN ADDRESS!

S O .
o || (R
il S
<1 K
i ol (8

Last time: Rooted Binary Trees

* Basis: * |s arooted binary tree
* Recursive step:

Defining Functions on Rooted Binary Trees

size(¢):=1

:= 1 + size(T,) + size(T,)

) := 1 + max{height(T,), height(T,)}

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

" —

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heishtTd+1 — 1 for k=1,2
4. Inductive Step: Goal: Prove P(/\).

N

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heehtMI+1 1 for k=1,2

4. Inductive Step: Goal: Prove P(/\)
size(T/\) = L’V\ 5T «\ by W o st
R l/\@—(_)‘kt Mc(li\{ \0 (L\\k’
o k Jrl\ﬂ -+ et
T «\ (D) +\ b
| wge
=245 L
/\
S|)
height(®) =0

.—'

.............................

height(T1/\T2)::= 1 + max{height(T,), height(T,)} MZhEIght(/\)+1 1 bt] W&\’\

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heehtMI+1 1 for k=1,2

4. Inductive Step: Goal: Prove P(/\)

By def, S|ze(/\) =1+size(T,)+size(T,)

N < 149height(T1)+1_1 4 height(T2)+1_1
@\ 1 N by IHforT,and T,
\ \o . .
N — Jheight(T1)+1 D height(Ta)+1_q
palh \NN&"\ | .
“) < 2-max(2heignt(TL)+1, phelght(T2)+1) 1 -
— 2(2max(height(Tl),height(Tz))+1)_1 Qj

= 2(2he|ght(‘_,ﬁ")) —1= 2he|ght(h_<: 11

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.

Strings é

 An alphabet X is any finite set of characters
=

* The set 2* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000,001, .. and *’

 2* js defined recursively by
— Basis: £ € X* (¢ is the empty string, i.e., “”)
— Recursive: ifw e 2*,a € 2,thenwa € 2*

Palindromes i OI0 z; 30,@ obl‘t\o

Palindromes are strings that are the same when
read backwards and forwards

| a
Basis: ‘ J
v
= ¢ is a palindrome Y
> any a € Y is a palindrome o\ U | |
Recursive step: U
If p is a palindrome, 0 LD

then apa is a palindrome for every a € 2

Functions on Recursively Defined Sets (on *%)

Length:
len(e) :=0
len(wa) :=len(w) +1forw eX* aeX

Concatenation: (J@Wl/(‘ L/ QZ\

xeeg:=xforx e X"
xewa:=(xew)laforxeX* aeX

Reversal: \/OP\ CP‘AUWLM % \ ad

eR:=¢

(wa)R:=aewRforweX* aeX CQ\U*’(\ Q ‘f\ M’(@*’)
Number of c’s in a string: ©>

#ole) =0 (‘sgparate ases for

(wc) :=# (w)+1forweX” = [+ 0P (o vE.a#c

#C(wa):=#C(w)foerZ*,aEZ,a¢c (40§ = O

Claim: len(xey) = len(x) + len(y) for all x,y €X”

Let P(y) be “len(xey) = len(x) + len(y) forall x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = €): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + len(€) since len(€)=0. Since x was arbitrary, P(¢) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X%, i.e., len(xew) = len(x) + len(w) for all x

Claim: len(xey) = len(x) + len(y) for all x,y €X”

Let P(y) be “len(xey) = len(x) + len(y) for allx €| Does this look
We prove P(y) for all y € X* by structural indu familiar?

Base Case (y = €): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + len(€) since len(€)=0. Since x was arbitrary, P(¢) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X* i.e., len(xew) = len(x) + len(w) for all x
Inductive Step: |Goal: Show that P(wa) is true for everya € X

Let a € X and x € X*. Then len(xewa) = len((x®*w)a) by def of e
= len(xew)+1 by def of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by def of len

Therefore, len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X*

i% _ iske o [cHes Mg) - soks ohEHS
/7 —
g'z30 3 oo ‘?% 7o), 40, 16’625

Theoretical Computer Science

Languages: Sets of Strings

* Subsets of strings are called languages

* Examples:
— >" = All strings over alphabet X
— Palindromes over X~
— Binary strings that don’t have a O aftera 1
— Binary strings with an equal # of O’'s and 1's
— Legal variable names in Java/C/C++
— Syntactically correct Java/C/C++ programs
— Valid English sentences

Foreword on Intro to Theory C.S.

* Look at different ways of defining languages

 See which are more expressive than others
— i.e., which can define more languages

e Later: connect ways of defining languages to
different types of (restricted) computers

— computers capable of recognizing those languages
I.e., distinguishing strings in the language from not

 Consequence: computers that recognize more
expressive languages are more powerful

Regular Expressions

Regular expressions over X

* Basis:
€ is a regular expression (could also include @)
a is a regular expression forany a € X

* Recursive step:
If A and B are regular expressions, then so are:
AUB
AB
A*

Each Regular Expression is a “pattern” g :%O/@

Motk
€ matches only the empty string 0 2;2@
a matches only the one-character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another (e U AU AA U AAA U ...)

Definition of the language
matched by a regular expression

Examples i - %Ol \73

001+ ool 0p LI

S——

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples Z - ?‘7(¥

Ooui1l)00ul0

Do OO0
| 0 D

(0*1*? (D v, D%

Examples

Ooui1l)00ul0

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings

Examples

* All binary strings that contain 0110

(ou)¥p (0 (oul)*

Examples

* All binary strings that contain 0110

(OuU 1)*0110 (0 1)*

Examples (D OD&DH 0

* All binary strings that contain 0110

(OuU 1)*0110 (0 1)*

* All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001 ~

T (M&Lu@(’ly)

HO VY L] [Dloo v [ODO() (DO) ﬁd(owox
0 01) e

Examples

* All binary strings that contain 0110

(OuU 1)*0110 (0 1)*

* All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001

(00U 11)* (01010 U 10001) (O L 1)*

Regular Expressions in Practice

* Used to define the tokens of a programming language
— legal variable names, keywords, etc.

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

* We can use regular expressions in programs to
process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");

boolean b = m.matches(); /V%YLUKf
[01] aOoral “startofstring $ end ofstring
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(a|lb) aorb (A U B)
a? zero or one of a (AU Eg)
ax zero or more of a A*
&5a+ one or more of a AA*

* eg ~[\-+]1?2[0-91*(\.|\,)?[0-9]+%
General form of decimal number e.g. 9.12 or -9,8 (Europe)

