
CSE 311: Foundations of Computing

Lecture 18: Strings and Regular Expressions

Last time: Rooted Binary Trees

• Basis: • is a rooted binary tree
• Recursive step:

If and are rooted binary trees,

then also is a rooted binary tree.

T1 T2

T1
T2

Defining Functions on Rooted Binary Trees

• size(•) := 1

• size () := 1 + size(T1) + size(T2)

• height(•) := 0

• height () := 1 + max{height(T1), height(T2)}

T1 T2

T1 T2

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some

rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some

rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step: Goal: Prove P().

size()

≤ 2height()+1 – 1

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some

rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step: Goal: Prove P().

By def, size() =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T1 and T2
= 2height(T1)+1+2height(T2)+1–1
≤ 2·max(2height(T1)+1,2height(T2)+1)–1
= 2(2max(height(T1),height(T2))+1)–1
= 2(2height()) – 1 = 2height()+1 – 1

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.

Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S
– example: {0,1}* is the set of binary strings

0, 1, 00, 01, 10, 11, 000, 001, … and “”

• S* is defined recursively by
– Basis: εÎ S∗ (ε is the empty string, i.e., “”)
– Recursive: if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*

Palindromes

Palindromes are strings that are the same when
read backwards and forwards

Basis:
ε is a palindrome
any 𝑎 ∈ S is a palindrome

Recursive step:
If 𝑝 is a palindrome,
then 𝑎𝑝𝑎 is a palindrome for every 𝑎 ∈ S

Functions on Recursively Defined Sets (on S*)
Length:

len(ε) := 0
len(wa) := len(w) + 1 for w ∈	S*, a ∈	S

Concatenation:
x • ε := x for x ∈ S*
x • wa := (x • w)a for x ∈	S*, a ∈	S

Reversal:
ε R := ε
(wa)R := a • wR for w ∈	S*, a ∈	S

Number of c’s in a string:
#c(ε) := 0
#c(wc) := #c(w) + 1 for w ∈	S*
#c(wa) := #c(w) for w ∈	S*, a ∈	S, a ≠ c

separate cases for
c vs a ≠ c

Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x ∈	S* be arbitrary. Then, len(x • ε) = len(x) =
len(x) + len(ε) since len(ε)=0. Since x was arbitrary, P(ε) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*

Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x ∈	S* be arbitrary. Then, len(x • ε) = len(x) =
len(x) + len(ε) since len(ε)=0. Since x was arbitrary, P(ε) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Inductive Step: Goal: Show that P(wa) is true for every a ∈	S
Let a ∈	S and x ∈	S*. Then len(x•wa) = len((x•w)a) by def of •

= len(x•w)+1 by def of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by def of len

Therefore, len(x•wa)= len(x)+len(wa) for all x ∈	S*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ S*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*

Does this look
familiar?

Theoretical Computer Science

Languages: Sets of Strings

• Subsets of strings are called languages
• Examples:
– S*=	All strings over alphabet S
– Palindromes over S
– Binary strings that don’t have a 0 after a 1
– Binary strings with an equal # of 0’s and 1’s
– Legal variable names in Java/C/C++
– Syntactically correct Java/C/C++ programs
– Valid English sentences

Foreword on Intro to Theory C.S.

• Look at different ways of defining languages
• See which are more expressive than others
– i.e., which can define more languages

• Later: connect ways of defining languages to
different types of (restricted) computers
– computers capable of recognizing those languages

i.e., distinguishing strings in the language from not

• Consequence: computers that recognize more
expressive languages are more powerful

Regular Expressions

Regular expressions over S
• Basis:

e is a regular expression (could also include Æ)
a is a regular expression for any a Î S

• Recursive step:
If A and B are regular expressions, then so are:

AÈ B
AB
A*

Each Regular Expression is a “pattern”

e matches only the empty string
a matches only the one-character string a
A È B matches all strings that either A matches

or B matches (or both)
AB matches all strings that have a first part that A

matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another (e È A È AA È AAA È …)

Definition of the language
matched by a regular expression

Examples

001*

0*1*

Examples

001*

0*1*

{00, 001, 0011, 00111, …}

Any number of 0’s followed by any number of 1’s

Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings

Examples

• All binary strings that contain 0110

Examples

• All binary strings that contain 0110

(0 È 1)* 0110 (0 È 1)*

Examples

• All binary strings that contain 0110

• All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001

(0 È 1)* 0110 (0 È 1)*

Examples

• All binary strings that contain 0110

• All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*

Regular Expressions in Practice

• Used to define the tokens of a programming language
– legal variable names, keywords, etc.

• Used in grep, a program that does pattern matching
searches in UNIX/LINUX

• We can use regular expressions in programs to
process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
boolean b = m.matches();

[01] a 0 or a 1 ^ start of string $ end of string
[0-9] any single digit \. period \, comma \- minus
. any single character
ab a followed by b (AB)
(a|b) a or b (AÈ B)
a? zero or one of a (AÈ e)
a* zero or more of a A*
a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

