Lecture 18: Strings and Regular Expressions

Whenever I learn a new skill I concoct elaborate fantasy scenarios where it lets me save the day.

Oh no! The killer must have followed her on vacation!

But to find them, we'd have to search through 200MB of emails looking for something formatted like an address! It's hopeless!

Everybody stand back.

I know regular expressions.
Last time: Rooted Binary Trees

• **Basis:**
 • is a rooted binary tree

• **Recursive step:**

If \(T_1 \) and \(T_2 \) are rooted binary trees,

then also is a rooted binary tree.
Defining Functions on Rooted Binary Trees

- \(\text{size}(\bullet) := 1 \)

- \(\text{size} \left(\begin{array}{c} T_1 \\ T_2 \end{array} \right) := 1 + \text{size}(T_1) + \text{size}(T_2) \)

- \(\text{height}(\bullet) := 0 \)

- \(\text{height} \left(\begin{array}{c} T_1 \\ T_2 \end{array} \right) := 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \)
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)+1–1}$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet)=1$, $\text{height}(\bullet)=0$, and $2^{0+1–1}=2^{1–1}=1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2, i.e., $\text{size}(T_k) \leq 2^{\text{height}(T_k)} + 1 – 1$ for $k=1,2$

4. Inductive Step: Goal: Prove $P(\text{ }).$
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$, and $2^{0+1} - 1 = 2^1 - 1 = 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2, i.e., $\text{size}(T_k) \leq 2^{\text{height}(T_k)} + 1 - 1$ for $k=1,2$.

4. Inductive Step:

 Goal: Prove $P(\begin{array}{c} T_1 \\ T_2 \end{array})$.

 $\text{size}(\begin{array}{c} T_1 \\ T_2 \end{array}) = \text{size}(T_1) + \text{size}(T_2) + 1$

 by def of size

 $\leq 2^{h(T_1)} - 1 + 2^{h(T_2)} - 1 + 1$

 by IH twice

 $= 2^{h(T_1)} + 2^{h(T_2)} - 1$

 algebra

 $\leq 2^{\max(h(T_1), h(T_2))} + 1 - 1$

 $= 2^{\text{height}(\begin{array}{c} T_1 \\ T_2 \end{array}) + 1} - 1$

 by def of height

 $\leq 2^{\text{height}(T) + 1} - 1$

 by IH
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)+1} - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$, and $2^{0+1} - 1 = 2^1 - 1 = 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2, i.e., $\text{size}(T_k) \leq 2^{\text{height}(T_k)} + 1 - 1$ for $k=1,2$.

4. Inductive Step: Goal: Prove $P(\text{rooted binary tree}).$

By def, $\text{size}(\text{rooted binary tree}) = 1 + \text{size}(T_1) + \text{size}(T_2) \leq 1 + 2^{\text{height}(T_1)+1} - 1 + 2^{\text{height}(T_2)+1} - 1$

by IH for T_1 and T_2

$= 2^{\text{height}(T_1)+1} + 2^{\text{height}(T_2)+1} - 1$

$\leq 2 \cdot \max(2^{\text{height}(T_1)+1}, 2^{\text{height}(T_2)+1}) - 1$

$= 2 \cdot \max(\text{height}(T_1), \text{height}(T_2)) + 1 - 1$

$= 2 \cdot \max(\text{height}(T_1), \text{height}(T_2)) + 1 - 1$

which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted binary trees by structural induction.
Strings

• An alphabet Σ is any finite set of characters

• The set Σ^* of strings over the alphabet Σ
 – example: $\{0,1\}^*$ is the set of binary strings
 $0, 1, 00, 01, 10, 11, 000, 001, \ldots$ and “”

• Σ^* is defined recursively by
 – Basis: $\varepsilon \in \Sigma^*$ (\varepsilon is the empty string, i.e., “”)
 – Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$
Palindromes

Palindromes are strings that are the same when read backwards and forwards.

Basis:
- ε is a palindrome
- any $a \in \Sigma$ is a palindrome

Recursive step:
- If p is a palindrome,
 then apa is a palindrome for every $a \in \Sigma$
Functions on Recursively Defined Sets (on Σ^*)

Length:
\[
\text{len}(\varepsilon) := 0 \\
\text{len}(wa) := \text{len}(w) + 1 \text{ for } w \in \Sigma^*, \ a \in \Sigma
\]

Concatenation:
\[
x \cdot \varepsilon := x \text{ for } x \in \Sigma^* \\
x \cdot wa := (x \cdot w)a \text{ for } x \in \Sigma^*, \ a \in \Sigma
\]

Reversal:
\[
\varepsilon^R := \varepsilon \\
(wa)^R := a \cdot w^R \text{ for } w \in \Sigma^*, \ a \in \Sigma
\]

Number of c’s in a string:
\[
\#_c(\varepsilon) := 0 \\
\#_c(wc) := \#_c(w) + 1 \text{ for } w \in \Sigma^* \\
\#_c(wa) := \#_c(w) \text{ for } w \in \Sigma^*, \ a \in \Sigma, \ a \neq c
\]
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case \((y = \varepsilon) \): Let \(x \in \Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Since \(x \) was arbitrary, \(P(\varepsilon) \) holds.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \), i.e., \(\text{len}(x \cdot w) = \text{len}(x) + \text{len}(w) \) for all \(x \)
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case \((y = \varepsilon)\): Let \(x \in \Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Since \(x \) was arbitrary, \(P(\varepsilon) \) holds.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \), i.e., \(\text{len}(x \cdot w) = \text{len}(x) + \text{len}(w) \) for all \(x \in \Sigma^* \).

Inductive Step: Goal: Show that \(P(wa) \) is true for every \(a \in \Sigma \).

Let \(a \in \Sigma \) and \(x \in \Sigma^* \). Then \(\text{len}(x \cdot wa) = \text{len}((x \cdot w)a) \) by def of \(\cdot \)

\[
= \text{len}(x \cdot w) + 1 \quad \text{by def of len}
\]

\[
= \text{len}(x) + \text{len}(w) + 1 \quad \text{by I.H.}
\]

\[
= \text{len}(x) + \text{len}(wa) \quad \text{by def of len}
\]

Therefore, \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), so \(P(wa) \) is true.

So, by induction \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \).
\[\Sigma^* = \text{lists of letters} \]

\[\Sigma = \{ a, b \} \quad \text{or} \quad \{ \emptyset, \{ a \}, \{ b \}, \{ a, b \} \} \]

Theoretical Computer Science
Languages: Sets of Strings

• Subsets of strings are called languages

• Examples:
 – $\Sigma^* = \text{All strings over alphabet } \Sigma$
 – Palindromes over Σ
 – Binary strings that don’t have a 0 after a 1
 – Binary strings with an equal # of 0’s and 1’s
 – Legal variable names in Java/C/C++
 – Syntactically correct Java/C/C++ programs
 – Valid English sentences
• Look at different ways of defining languages
• See which are more expressive than others
 – i.e., which can define more languages

• Later: connect ways of defining languages to different types of (restricted) computers
 – computers capable of recognizing those languages
 i.e., distinguishing strings in the language from not

• Consequence: computers that recognize more expressive languages are more powerful
Regular Expressions

Regular expressions over Σ

- **Basis:**
 - ε is a regular expression (could also include \emptyset)
 - a is a regular expression for any $a \in \Sigma$

- **Recursive step:**
 - If A and B are regular expressions, then so are:
 - $A \cup B$
 - AB
 - A^*
Each Regular Expression is a “pattern”

\[\varepsilon \text{ matches only the empty string } \]
\[a \text{ matches only the one-character string } a \]
\[A \cup B \text{ matches all strings that either } A \text{ matches or } B \text{ matches (or both)} \]
\[AB \text{ matches all strings that have a first part that } A \text{ matches followed by a second part that } B \text{ matches} \]
\[A^* \text{ matches all strings that have any number of strings (even 0) that } A \text{ matches, one after another } (\varepsilon \cup A \cup AA \cup AAA \cup ...) \]

Definition of the language matched by a regular expression
Examples

\[\sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{1}{2} \]

001*

001
001
001

0*1*

3 3

000
000
Examples

001*

\{00, 001, 0011, 00111, \ldots\}

0*1*

Any number of 0’s followed by any number of 1’s
Examples

\[\Sigma = \{0, 1, 13\} \]

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}
\]

\((0*1*)^*\)

\((0 \cup 1)^*\)
Examples

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\(\{0000, 0010, 1000, 1010\}\)

\((0*1*)^*\)

All binary strings
Examples

- All binary strings that contain 0110

\[(011)^* \text{0110 (011)}^*\]
Examples

- All binary strings that contain 0110

\[(0 \cup 1)^* \ 0110 \ (0 \cup 1)^*\]
Examples

- All binary strings that contain 0110

\[(0 \cup 1)^* 0110 (0 \cup 1)^*\]

- All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

\[(00 \cup 11)(01010 \cup 10001)(001)^* \text{ immediately followed by anything}\]
Examples

• All binary strings that contain 0110

\[(0 \cup 1)^* \ 0110 \ (0 \cup 1)^*\]

• All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

\[(00 \cup 11)^* \ (01010 \cup 10001) \ (0 \cup 1)^*\]
Regular Expressions in Practice

• Used to define the *tokens* of a programming language
 – legal variable names, keywords, etc.

• Used in `grep`, a program that does pattern matching searches in UNIX/LINUX

• We can use regular expressions in programs to process strings!
Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
boolean b = m.matches(); // true

- [01] a 0 or a 1 ^ start of string $ end of string
- [0-9] any single digit . period , comma \ - minus
- . any single character
- ab a followed by b (AB)
- (a|b) a or b (A ∪ B)
- a? zero or one of a (A ∪ ε)
- a* zero or more of a A*
- a+ one or more of a AA*

• e.g. ^\[[\-+]?[0-9]*(\.|\|\,)?[0-9]+$ General form of decimal number e.g. 9.12 or -9,8 (Europe)