CSE 311: Foundations of Computing

Lecture 18: Strings and Regular Expressions

Last time: Rooted Binary Trees

- Basis:
 is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(•) := 1

• size
$$\left(\begin{array}{c} & & \\ &$$

• height(•) := 0

• height
$$\left(\begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$$

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size $(T_k) \le 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

Goal: Prove P(

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size $(T_k) \le 2^{height(T_k) + 1} 1$ for k=1,2

Goal: Prove P(

4. Inductive Step:

size $(f_1, f_2) = S(T_1) + S(T_2) + (by Act of Size)$ $\leq 2h(T_1) + (T_2) + (f_2) + (by Act of Size)$ $\leq 2h(T_1) + (f_2) + (f_2) + (by T_1) + (by T_1)$ $= 2h(T_1) + i + 2h(T_2) + i - i algebra$ size(•) ::= 1 $max(h(T_1), h(T_2)) + 1 + 1$ size $\left(\begin{array}{c} \\ T_{1} \end{array} \right) ::= 1 + size(T_{1}) + size(T_{2})$ height(•) ::= 0 by refat ::= 1 + max{height(T_1), height(T_2)} height (

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size $(T_k) \le 2^{height(T_k) + 1} 1$ for k=1,2

Goal: Prove P(< 4. Inductive Step: By def, size($) = 1 + size(T_1) + size(T_2)$ $< 1+2^{height(T_1)+1}-1+2^{height(T_2)+1}-1$ max[Linay[a]]= 2 by IH for T_1 and T_2 $= 2^{\text{height}(T_1)+1}+2^{\text{height}(T_2)+1}-1$ $\leq 2 \cdot \max(2^{\text{height}(T_1)+1}, 2^{\text{height}(T_2)+1})-1$ $= 2(2^{\max(\text{height}(T_1), \text{height}(T_2))+1})-1$ $= 2(2^{\text{height}}(4)) - 1 = 2^{\text{height}}(4)^{+1} - 1$

which is what we wanted to show.

5. So, the P(T) is true for all rooted binary trees by structural induction.

- An alphabet Σ is any finite set of characters
- The set Σ^* of strings over the alphabet Σ
 - example: {0,1}* is the set of binary strings 0, 1, 00, 01, 10, 11, 000, 001, ... and ""
- Σ^* is defined recursively by - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string, i.e., "") - Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Palindromes are strings that are the same when read backwards and forwards

5= 30,13

Basis:

 $\rightarrow \varepsilon$ is a palindrome any $a \in \Sigma$ is a palindrome

Recursive step:

If *p* is a palindrome, then apa is a palindrome for every $a \in \Sigma$

Functions on Recursively Defined Sets (on Σ^*)

Length: $len(\varepsilon) := 0$ len(wa) := len(w) + 1 for w $\in \Sigma^*$, a $\in \Sigma$ (oucat(le, b) **Concatenation:** $x \bullet \varepsilon := x \text{ for } x \in \Sigma^*$ $x \bullet wa := (x \bullet w)a$ for $x \in \Sigma^*$, $a \in \Sigma$ Concat(nil, M:=~ **Reversal**: $\varepsilon^{R} := \varepsilon$ $(wa)^{R} := a \bullet w^{R}$ for $w \in \Sigma^{*}$, $a \in \Sigma$ $(math a:: l_{1} s) : z$ a::concat(b,r)Number of c's in a string: $\#_{c}(\varepsilon) := 0$ $\#_c(wc) := \#_c(w) + 1$ for $w \in \Sigma^*$ $\#_{c}(wa) := \#_{c}(w)$ for $w \in \Sigma^{*}$, $a \in \Sigma$, $a \neq c$

Claim: len(x•y) = len(x) + len(y) for all $x, y \in \Sigma^*$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x

Claim: len(x•y) = len(x) + len(y) for all $x,y \in \Sigma^*$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in$ We prove P(y) for all $y \in \Sigma^*$ by structural indu Does this look familiar?

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$ and $x \in \Sigma^*$. Then $len(x \bullet wa) = len((x \bullet w)a)$ by def of \bullet

= $len(x \bullet w)+1$ by def of len

= len(x)+len(w)+1 **by I.H.**

= len(x)+len(wa) by def of len

Therefore, len(x•wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

P(Z) = sets of p-yous $51 \neq -$ lists of letters $\{20, 50\}, \{13, 20, 13\}$ 5= 3013 00000

Theoretical Computer Science

Languages: Sets of Strings

- Subsets of strings are called languages
- Examples:
 - $-\Sigma^* = \text{All strings over alphabet } \Sigma$
 - Palindromes over $\boldsymbol{\Sigma}$
 - Binary strings that don't have a 0 after a 1
 - Binary strings with an equal # of 0's and 1's
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences

Foreword on Intro to Theory C.S.

- Look at different ways of defining languages
- See which are more <u>expressive</u> than others – i.e., which can define more languages
- Later: connect ways of defining languages to different types of (restricted) computers
 - computers capable of recognizing those languages
 i.e., distinguishing strings in the language from not
- Consequence: computers that recognize more expressive languages are more powerful

Regular expressions over Σ

• Basis:

\varepsilon is a regular expression (could also include \emptyset) *a* is a regular expression for any $a \in \Sigma$

• Recursive step:

If **A** and **B** are regular expressions, then so are:

 $\mathbf{A} \cup \mathbf{B}$ $\mathbf{A}\mathbf{B}$

A*

- ε matches only the empty string
- *a* matches only the one-character string *a*
- $A \cup B$ matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another ($\varepsilon \cup A \cup AA \cup AA \cup ...$)

Definition of the *language* matched by a regular expression

Matche

Examples

え= ろの13

001 0011111111

(001)* E OOL DELOO OD...

00(1*)

9v DIIIN $\left[\right]$

70

001*

$\{00, 001, 0011, 00111, ...\}$

0*1*

Any number of 0's followed by any number of 1's

Examples

2=30,13

 $(0 \cup 1) 0 (0 \cup 1) 0$ 00 0

Examples

 $(\mathbf{0} \cup \mathbf{1}) \, \mathbf{0} \, (\mathbf{0} \cup \mathbf{1}) \, \mathbf{0}$

 $\{0000, 0010, 1000, 1010\}$

(0*1*)*

All binary strings

$(001)^{*}010(001)^{*}$

```
(0 \cup 1)^* 0110 (0 \cup 1)^*
```



```
(0 \cup 1)^* 0110 (0 \cup 1)^*
```

```
(0 \cup 1)* 0110 (0 \cup 1)*
```

• All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

 $(00 \cup 11)$ * $(01010 \cup 10001)(0 \cup 1)$ *

Regular Expressions in Practice

- Used to define the *tokens* of a programming language
 - legal variable names, keywords, etc.
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

<pre>Pattern p = Pattern.compile("a*b");</pre>
Matcher m = p.matcher("aaaaab");
<pre>boolean b = m.matches(); (/frue</pre>
[01] a 0 or a 1 ^ start of string \$ end of string
$[0-9]$ any single digit \backslash . period \backslash , comma \backslash - minus
. any single character
ab a followed by b (AB)
(a b) a or b $(A \cup B)$
a? zero or one of a $(A \cup \varepsilon)$
a* zero or more of a A*
$a+$ one or more of a AA^*
• e.g. ^ [\-+]?[0-9] * (\.)?[0-9]+\$
General form of decimal number e.g. 9.12 or -9,8 (Europe)