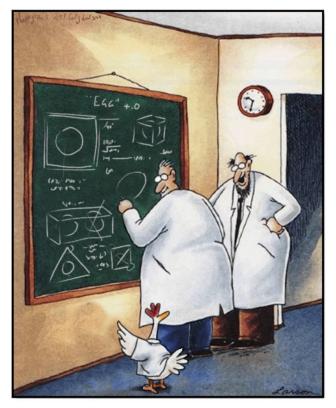
CSE 311: Foundations of Computing

Lecture 17: Structural Induction



What's that Doctor McCluckles? Making them ovoid would increase structural integrity and enable a more comfortable delivery? He's right again Professor!

- Midterm in class next Wednesday
- Covers material up to ordinary induction (HW5)
- Closed book, closed notes
 will provide reference sheets
- No calculators
 - arithmetic is intended to be straightforward
 - (only a small point deduction anyway)

Midterm

- 5 problems covering:
 - Propositional Logic
 - Including circuits / Boolean algebra / normal forms
 - Predicate Logic/English Translation
 - Modular arithmetic
 - Set theory
 - Induction
- 10 minutes per problem
 - write quickly, don't get stuck on one problem
 - focus on the overall structure of the solution

CSE 311: Foundations of Computing

Lecture 17: Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements *w* constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Last time: Using Structural Induction

- Let *S* be given by...
 - **Basis:** $6 \in S$; $15 \in S$
 - **Recursive:** if $x, y \in S$ then $x + y \in S$.

Claim: Every element of S is divisible by 3.

1. Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$

4. Inductive Step: Goal: Show P(x+y)

- **1**. Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- **4. Inductive Step:** Goal: Show P(x+y)

Since P(x) is true, 3 | x and so x=3m for some integer m and since P(y) is true, 3 | y and so y=3n for some integer n. Therefore x+y=3m+3n=3(m+n) and thus 3 | (x+y).

Hence P(x+y) is true.

5. Therefore by induction 3 | x for all $x \in S$.

- Let *R* be given by...
 - **Basis:** $12 \in R$; $15 \in R$
 - **Recursive:** if $x \in R$, then $x + 6 \in R$ and $x + 15 \in R$

• Two base cases and two *recursive* cases, one existing element.

Claim: $R \subseteq S$; i.e. every element of R is also in S. **Proof needs structural induction using definition of** R **since statement is of the form** $\forall x \in R.P(x)$

Claim: Every element of *R* is in *S*. ($R \subseteq S$)

- **1**. Let P(x) be " $x \in S$ ". We prove that P(x) is true for all $x \in R$ by structural induction.
- **2. Base Case:** (12): $6 \in S$ so $6+6=12 \in S$ by definition of S, so P(12) (15): $15 \in S$, so P(15) is also true
- **3.** Ind. Hyp: Suppose that P(x) is true for some arbitrary $x \in R$
- 4. Inductive Step: Goal: Show P(x+6) and P(x+15)Since P(x) holds, we have $x \in S$. Since $6 \in S$ from the recursive step of S, we get $x + 6 \in S$, so P(x+6) is true, and since $15 \in S$ we get $x + 15 \in S$, so P(x+15) is true.
- **5.** Therefore P(x) (i.e., $x \in S$) for all $x \in R$ by induction.

Basis: $6 \in S$; $15 \in S$	Basis: $12 \in R$; $15 \in R$
Recursive: if $x, y \in S$,	Recursive: if $x \in R$, then $x + 6 \in R$
then $x + y \in S$	and $x + 15 \in R$

- Recursively defined functions and sets are our mathematical models of code and the data it uses
 - recursively defined sets can be translated into Java classes
 - recursively defined functions can be translated into Java functions

some (but not all) can be written more cleanly as loops

• Can now do proofs about CS-specific objects

Lists of Integers

- **Basis:** nil ∈ **List**
- Recursive step:
 if L ∈ List and a ∈ Z,
 then a :: L ∈ List

Examples:

- nil
- 1 :: nil
- 2 :: 1 :: nil
- 3 :: 2 :: 1 :: nil

[] [1] [2, 1] [3, 2, 1] Assume that the recursive definition of *S* gives a unique way to construct every element of *S*.

We can define the values of a function *f* on *S* recursively as follows:

Basis: Define f(u) for all specific elements u of S mentioned in the Basis step

Recursive Step: Define f(w) for each of the new elements w constructed in terms of f applied to each of the existing named elements mentioned in the *Recursive step*

Basis: nil \in ListRecursive step:if $L \in$ List and $a \in \mathbb{Z}$,then $a :: L \in$ List

Length:

len(nil) := 0len(a :: L) := len(L) + 1

for any $L \in \textbf{List}$ and $a \in \mathbb{Z}$

Concatenation:

concat(nil, R) := R
concat(a :: L, R) := a :: concat(L, R)

for any $R \in List$ for any L, $R \in List$ and any $a \in \mathbb{Z}$ How to prove $\forall x \in S, P(x)$ is true:

Basis→ nil ∈ List

Recursive step:

if $L \in List$ and $a \in \mathbb{Z}$,

then a :: L ∈ List

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Claim: len(concat(L, R)) = len(L) + len(R) for all $L, R \in List$

Length:

 $\frac{\text{len(nil)} := 0}{\text{len}(a :: L) := \frac{\text{len}(L) + 1}{2}$

Concatenation:

Length:

 $\frac{\text{len(nil)} := 0}{\text{len(a :: L)} := \frac{\text{len(L)} + 1}{\text{len(L)} + 1}$

Concatenation:

Base Case (nil): Let $R \in List$ be arbitrary. Then,

Length:

 $\frac{\text{len(nil)} := 0}{\text{len(a :: L)} := \frac{\text{len(L)} + 1}{\text{len(L)} + 1}$

Concatenation:

Base Case (nil): Let $R \in$ List be arbitrary. Then,

$$len(concat(nil, R)) = len(R) def of concat= 0 + len(R)= len(nil) + len(R) def of len$$

Since R was arbitrary, P(nil) holds.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.

Basis: nil \in List **Recursive step: if** $L \in$ List and $a \in \mathbb{Z}$, **then** $a :: L \in$ List

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.Inductive Step:Goal: Show that P(a :: L) is true

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.Inductive Step:Goal: Show that P(a :: L) is true

Let $R \in List$ be arbitrary. Then,

Length:

len(nil) := 0len(a :: L) := len(L) + 1 **Concatenation:**

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.Inductive Step:Goal: Show that P(a :: L) is true

Let $R \in List$ be arbitrary. Then, we can calculate len(concat(a :: L, R)) = len(a :: concat(L, R)) = 1 + len(concat(L, R)) = 1 + len(L) + len(R)= len(a :: L) + len(R)

def of concat def of len IH def of len

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.Inductive Step:Goal: Show that P(a :: L) is true

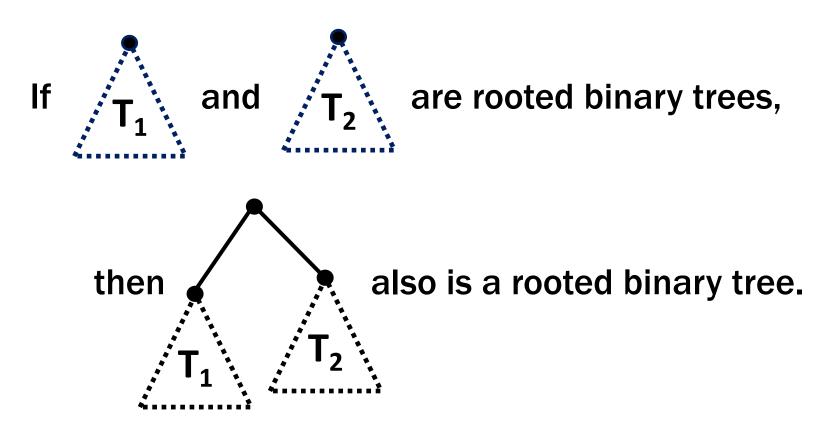
Let $R \in List$ be arbitrary. Then, we can calculate len(concat(a :: L, R)) = len(a :: concat(L, R)) = 1 + len(concat(L, R)) = 1 + len(L) + len(R)= len(a :: L) + len(R)

def of concat def of len IH def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all $L \in List$.

- Basis:
 is a rooted binary tree
- Recursive step:



Defining Functions on Rooted Binary Trees

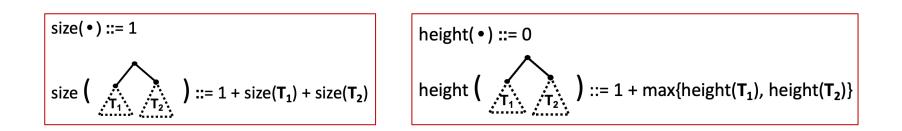
• size(•) := 1

• size
$$\left(\begin{array}{c} & & \\ &$$

• height(•) := 0

• height
$$\left(\begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

1. Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.



1. Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size $(T_k) \le 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

Goal: Prove P(

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size $(T_k) \le 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

Goal: Prove P(

size(•) ::= 1
size
$$\left(\begin{array}{c} & & \\$$

$$\begin{array}{c} \text{height}(\bullet) ::= 0\\ \text{height}\left(\overbrace{\uparrow_1},\overbrace{\uparrow_2}\right) ::= 1 + \max\{\text{height}(\mathsf{T}_1), \text{height}(\mathsf{T}_2)\} \\ \end{array} \leq 2 \end{array}$$

size(🏑

$$2^{\text{height}}$$
 $()^{+1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size $(T_k) \le 2^{height(T_k) + 1} 1$ for k=1,2
- Goal: Prove P(4. Inductive Step: By def, size(λ_1) =1+size(T₁)+size(T₂) $< 1+2^{height}(T_1)+1-1+2^{height}(T_2)+1-1$ by IH for T_1 and T_2 $= 2^{height}(T_1)+1+2^{height}(T_2)+1-1$ $\leq 2 \cdot \max(2^{\operatorname{height}(T_1)+1}, 2^{\operatorname{height}(T_2)+1}) - 1$ $\leq 2(2^{\max(\operatorname{height}(T_1),\operatorname{height}(T_2))+1})-1$ $\leq 2(2^{\text{height}}(\sqrt{2})) - 1 \leq 2^{\text{height}}(\sqrt{2})^{+1} - 1$ which is what we wanted to show. **5.** So, the P(T) is true for all rooted binary trees by structural induction.

- An alphabet Σ is any finite set of characters
- The set Σ^* of strings over the alphabet Σ
 - example: {0,1}* is the set of binary strings 0, 1, 00, 01, 10, 11, 000, 001, ... and ""
- Σ* is defined recursively by
 Basis: ε ∈ Σ* (ε is the empty string, i.e., "")
 Recursive: if w ∈ Σ*, a ∈ Σ, then wa ∈ Σ*

Palindromes are strings that are the same when read backwards and forwards

Basis:

 ϵ is a palindrome any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome, then apa is a palindrome for every $a \in \Sigma$

Functions on Recursively Defined Sets (on Σ^*)

Length:

len(ε) := 0 len(wa) := len(w) + 1 for w $\in \Sigma^*$, a $\in \Sigma$

Concatenation:

$$x \bullet \varepsilon := x \text{ for } x \in \Sigma^*$$

 $x \bullet wa := (x \bullet w)a \text{ for } x \in \Sigma^*, a \in \Sigma$

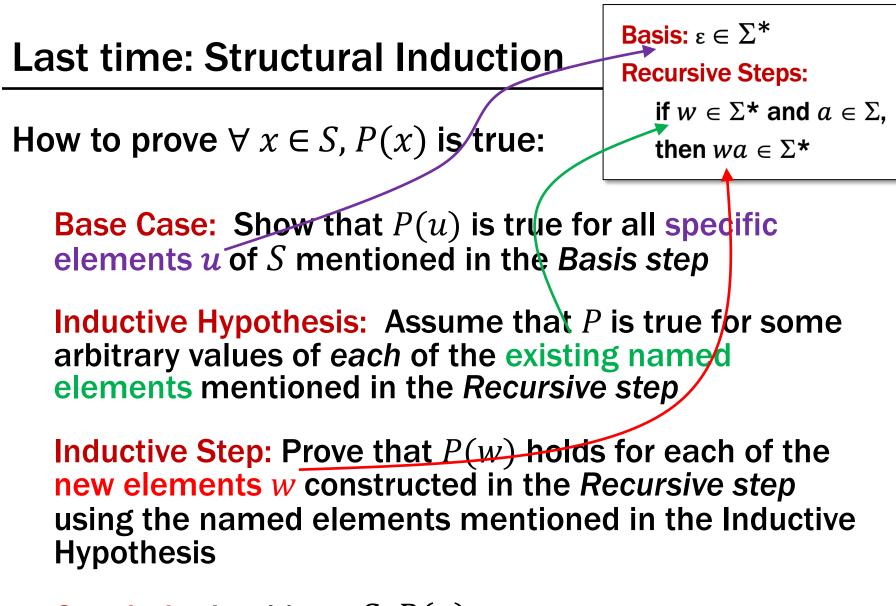
Reversal:

$$\varepsilon^{R} := \varepsilon$$

(wa)^R := a • w^R for w $\in \Sigma^{*}$, a $\in \Sigma$

Number of c's in a string:

$$\begin{aligned} \#_{c}(\varepsilon) &:= 0 & \text{separate cases for} \\ \#_{c}(wc) &:= \#_{c}(w) + 1 \text{ for } w \in \Sigma^{*} & \text{c vs } a \neq c \\ \#_{c}(wa) &:= \#_{c}(w) \text{ for } w \in \Sigma^{*}, a \in \Sigma, a \neq c \end{aligned}$$



Conclude that $\forall x \in S, P(x)$

Claim: len(x•y) = len(x) + len(y) for all $x, y \in \Sigma^*$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x

Claim: len(x•y) = len(x) + len(y) for all $x,y \in \Sigma^*$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in$ We prove P(y) for all $y \in \Sigma^*$ by structural indu Does this look familiar?

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$ and $x \in \Sigma^*$. Then $len(x \bullet wa) = len((x \bullet w)a)$ by def of \bullet

= $len(x \bullet w)+1$ by def of len

= len(x)+len(w)+1 **by I.H.**

= len(x)+len(wa) by def of len

Therefore, $len(x \bullet wa) = len(x) + len(wa)$ for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$