
CSE 311: Foundations of Computing

Lecture 17:        Structural Induction



Midterm

• Midterm in class next Wednesday

• Covers material up to ordinary induction (HW5)

• Closed book, closed notes

– will provide reference sheets

• No calculators

– arithmetic is intended to be straightforward

– (only a small point deduction anyway)



Midterm

• 5 problems covering:

– Propositional Logic

Including circuits / Boolean algebra / normal forms

– Predicate Logic/English Translation

– Modular arithmetic

– Set theory

– Induction

• 10 minutes per problem

– write quickly, don’t get stuck on one problem

– focus on the overall structure of the solution



CSE 311: Foundations of Computing

Lecture 17:        Structural Induction



Last time: Structural Induction

How to prove ∀ � ∈ �, �(�) is true:

Base Case: Show that �(
) is true for all specific 
elements 
 of � mentioned in the Basis step

Inductive Hypothesis:  Assume that � is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that �(�) holds for each of the 
new elements � constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀ � ∈ �, �(�) 



Last time: Using Structural Induction

• Let � be given by…

– Basis:   6 � �;   15 ∈ �

– Recursive:  if �, � ∈ � then � + � ∈ �.

Claim:  Every element of � is divisible by 3.



Last time:  Every element of � is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈ S by  

structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈ S

4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and

since P(y) is true, 3|y and so y=3n for some integer n.      

Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈ S.

Basis:   6 � �;   15 ∈ �

Recursive:  if �, � ∈ � then � + � ∈ �



More Structural Induction

• Let � be given by…

– Basis:   12 � �;   15 � �

– Recursive:  if � ∈ �, then � + 6 ∈ � and � + 15 ∈ �

• Two base cases and two recursive cases, one 

existing element.

Claim: � ⊆ � ; i.e. every element of � is also in �.

Proof needs structural induction using definition 

of � since statement is of the form ∀� ∈ �. �(�)



Claim: Every element of � is in �.  (� ⊆ �)

1. Let P(x) be “x ∈ S”.  We prove that P(x) is true for all x ∈ R by  

structural induction.

2. Base Case: (12): 6 ∈ S so 6+6=12 ∈ S by definition of S, so P(12)

(15): 15 ∈ S, so P(15) is also true

3. Ind. Hyp:  Suppose that P(x) is true for some arbitrary x ∈ R

4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)

Since P(x) holds, we have x ∈ S. Since 6 ∈ S from the recursive

step of S, we get x + 6 ∈ S, so P(x+6) is true, and since 15 ∈ S

we get x + 15 ∈ S, so P(x+15) is true.

5. Therefore P(x)  (i.e., x ∈ S) for all x ∈ R by induction.  

Basis:   6 � �;   15 ∈ �

Recursive:  if �, � ∈ �,

then � + � ∈ �

Basis:   12 � �;  15 � �

Recursive:  if � ∈ �, then � + 6 ∈ �

and � + 15 ∈ �



Recursive Definitions

• Recursively defined functions and sets are our 

mathematical models of code and the data it uses

– recursively defined sets can be translated into Java 

classes

– recursively defined functions can be translated into Java 

functions

some (but not all) can be written more cleanly as loops

• Can now do proofs about CS-specific objects



Lists of Integers

• Basis: nil ∈ List

• Recursive step: 

if L ∈ List and a ∈ ℤ,

then a :: L ∈ List

Examples:

– nil []

– 1 :: nil [1]

– 1 :: 2 :: nil [1, 2]

– 1 :: 2 :: 3 :: nil [1, 2, 3]



Functions on Recursively Defined Sets

Assume that the recursive definition of � gives a 
unique way to construct every element of �.

We can define the values of a function � on �
recursively as follows:

Basis: Define �(
) for all specific elements 
 of �
mentioned in the Basis step

Recursive Step:  Define �(�) for each of the new 
elements � constructed in terms of � applied to each 
of the existing named elements mentioned in the 
Recursive step



Functions on Lists

Length:

len(nil) := 0

len(a :: L) := len(L) + 1 for any L ∈ List and a ∈ Σ

Concatenation:

concat(nil, R) := R for any R ∈ List

concat(a :: L, R) := a :: concat(L, R) for any L, R ∈ List and

any a ∈ ℤ



Structural Induction

How to prove ∀ � ∈ �, �(�) is true:

Base Case: Show that �(
) is true for all specific 
elements 
 of � mentioned in the Basis step

Inductive Hypothesis:  Assume that � is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that �(�) holds for each of the 
new elements � constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀ � ∈ �, �(�) 



Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List



Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .   

We prove P(L) for all L ∈ List by structural induction.

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List



Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .   

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then,

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List



Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .   

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then,

len(concat(nil, R)) = len(R) def of concat

= 0 + len(R)

= len(nil) + len(R) def of len

Since R was arbitrary, P(nil) holds.

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List



Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .   

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R)) 

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List



Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .   

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R)) 

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Inductive Step: Goal: Show that P(a :: L) is true

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List



Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .   

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R)) 

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Inductive Step: Goal: Show that P(a :: L) is true

Let R ∈ List be arbitrary. Then, 

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List



Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .   

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R)) 

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Inductive Step: Goal: Show that P(a :: L) is true

Let R ∈ List be arbitrary. Then, we can calculate

len(concat(a :: L, R)) = len(a :: concat(L, R)) def of concat

= 1 + len(concat(L, R)) def of len

= 1 + len(L) + len(R) IH

= len(a :: L) + len(R) def of len

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List



Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .   

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R)) 

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Inductive Step: Goal: Show that P(a :: L) is true

Let R ∈ List be arbitrary. Then, we can calculate

len(concat(a :: L, R)) = len(a :: concat(L, R)) def of concat

= 1 + len(concat(L, R)) def of len

= 1 + len(L) + len(R) IH

= len(a :: L) + len(R) def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all L ∈ List.

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List



Rooted Binary Trees

• Basis:  •    is a rooted binary tree

• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   

T
1

T
2

T
1

T
2



Defining Functions on Rooted Binary Trees

• size(•) := 1

• size ( ) := 1 + size(T
1
) + size(T

2
)

• height(•) := 0

• height ( ) := 1 + max{height(T
1
), height(T

2
)}
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Last time: Structural Induction

How to prove ∀ � ∈ �, �(�) is true:

Base Case: Show that �(
) is true for all specific 
elements 
 of � mentioned in the Basis step

Inductive Hypothesis:  Assume that � is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that �(�) holds for each of the 
new elements � constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀ � ∈ �, �(�) 



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some 

rooted binary trees T
1

and T
2
.

4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T
1

and T
2

≤ 2height(T1)+1+2height(T2)+1–1

≤ 2(2max(height(T1),height(T2))+1)–1

≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some 

rooted binary trees T
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and T
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
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1

and T
2
, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2

4. Inductive Step:             Goal:  Prove P( ).
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some 

rooted binary trees T
1

and T
2
, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2

4. Inductive Step:             Goal:  Prove P( ).

By def, size(             ) =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T
1

and T
2

≤ 2height(T1)+1+2height(T2)+1–1

≤ 2·max(2height(T1)+1,2height(T2)+1)–1

≤ 2(2max(height(T1),height(T2))+1)–1

≤ 2(2height(      )) – 1 ≤ 2height(            )+1 – 1

which is what we wanted to show.

5. So, the P(T) is true for all rooted binary trees by structural induction.


