CSE 311: Foundations of Computing

Lecture 17: Structural Induction

What's that Doctor McCluckles? Making them ovoid would increase structural integrity and enable a more comfortable delivery? He's right again Professor!

- Midterm in class next Wednesday
- Covers material up to ordinary induction (HW5)

Seether T Lecture 14

- Closed book, closed notes
 - will provide reference sheets
- No calculators
 - arithmetic is intended to be straightforward
 - (only a small point deduction anyway)

- 5 problems covering:
 - Propositional Logic
 - Including circuits / Boolean algebra / normal forms
 - Predicate Logic/English Translation
 - Modular arithmetic
 - Set theory
 - Induction
- 10 minutes per problem
 - write quickly, don't get stuck on one problem
 - focus on the overall structure of the solution

CSE 311: Foundations of Computing

Lecture 17: Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the **existing named elements** mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements *w* constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Last time: Using Structural Induction

Last time: Every element of *S* is divisible by 3.

x=0(mol 3)

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3.** Inductive Hypothesis: Suppose that P(x) and P(y) are true for some arbitrary $x, y \in S$
- 4. Inductive Step: Goal: Show P(x+y)

Since P(x) is true, 3 | x and so x=2 m for some integer m and since P(y) is true, 3|y and so $y \neq 3$ n for some integer h. Therefore x+y=3m+3n=3(m+n) and thus 3(x+y).

Basis: $6 \in S$; $15 \in S$

Recursive: If $x, y \in S$ then $x + y \in S$

Hence P(x+y) is true.

5. Therefore by induction $3 \mid x$ for all $x \in S$. x = 0 (med) y=0 (med) = . x+y=0 (med 3)

- Two base cases and two *recursive* cases, one existing element.
- **Claim:** $R \subseteq S$; i.e. every element of R is also in S. **Proof needs structural induction using definition** of R since statement is of the form $\forall x \in R$. P(x) $(r \in S)$

Claim: Every element of *R* is in *S*. ($R \subseteq S$)

- **1.** Let P(x) be " $x \in S$ ". We prove that P(x) is true for all $x \in R$ by structural induction.
- **2.** Base Case: (12): $6 \in S$ so $6+6=12 \in S$ by definition of S, so P(12) (15): $15 \in S$, so P(15) is also true
- **3.** Ind. Hyp: Suppose that P(x) is true for some arbitrary $x \in R$
- **4. Inductive Step:** Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have $x \in S$. Since $6 \in S$ from the recursive step of S, we get $x + 6 \in S$, so P(x+6) is true, and since $15 \in S$ we get $x + 15 \in S$, so P(x+15) is true.

5. Therefore P(x) (i.e., $x \in S$) for all $x \in R$ by induction.

Basis: $6 \in S$; $15 \in S$ Basis: $12 \in R$; $15 \in R$ Recursive: if $x, y \in S$,
then $x + y \in S$ Recursive: if $x \in R$, then $x + 6 \in R$
and $x + 15 \in R$

- Recursively defined functions and sets are our mathematical models of code and the data it uses
 - recursively defined sets can be translated into Java classes
 - recursively defined functions can be translated into Java functions

some (but not all) can be written more cleanly as loops

Can now do proofs about CS-specific objects

Lists of Integers

- **Basis:** nil ∈ **List**
- Recursive step:

if $L \in List$ and $a \in \mathbb{Z}$,

then $a :: L \in List$

Examples:

Functions on Recursively Defined Sets

Assume that the recursive definition of *S* gives a unique way to construct every element of *S*.

We can define the values of a function *f* on *S* recursively as follows:

Basis: Define f(u) for all specific elements u of S mentioned in the Basis step

Recursive Step: Define f(w) for each of the new elements w constructed in terms of f applied to each of the existing named elements mentioned in the *Recursive step*

len(nil) := 0len(a :: L) := len(L) + 1

for any $L \in List$ and $a \in \mathfrak{D} \mathcal{F}$

Concatenation:

concat(nil, R) := Rconcat(a :: L, R) := a :: concat(L, R) for any $R \in List$ for any L, $R \in List$ and any $a \in \mathbb{Z}$

Structural Induction

Basis→ nil ∈ List

Recursive step:

How to prove $\forall x \in S, P(x)$ is true:

if $L \in List$ and $a \in \mathbb{Z}$,

then $a :: L \in List$

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R \in List

Let P(L) be "lengconcat(L,R)=len(L)+len(R) for all REList"

Length:

 $\frac{\text{len(nil)} := 0}{\text{len(a :: L)} := \text{len(L)} + 1}$

Concatenation: concat(nil, R) := R concat(a :: L, R) := a :: concat(L, R)

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R
$$\in$$
 List
Let P(L) be "len(concat(L, R)) = len(L) + len(R) for all R \in List".
We prove P(L) for all L \in List by structural induction.
Bare Gre ' P(uil)
Cmeat (uil,R)=R HLthit
LHS = lou(R)
D = lou(R)
Cheat (uil,R)=R HLthit
LHS = lou(R)
Cheat (uil,R)=R HLthit
Cheat (uil,R)=

Length:

len(nil) := 0len(a :: L) := len(L) + 1 **Concatenation:**

concat(nil, R) := R
concat(a :: L, R) := a :: concat(L, R)

Base Case (nil): Let $R \in List$ be arbitrary. Then,

Length:

 $\frac{\text{len(nil)} := 0}{\text{len(a :: L)} := \text{len(L)} + 1}$

Concatenation:

concat(nil, R) := Rconcat(a :: L, R) := a :: concat(L, R)

Base Case (nil): Let $R \in List$ be arbitrary. Then,

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.

 $\rho(a:L)$

fr all a EZ. p(nil) ¥L (P(L) -> P(a::L)) **Claim:** len(concat(L, R)) = len(L) + len(R) for all $L, R \in List$

Let P(L) be "len(concat(L, R)) = len(L) + len(R) for all $R \in List$ ". We prove P(L) for all $L \in List$ by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$. Inductive Step: Goal: Show that P(a :: L) is true

$$| \mathcal{E}_{n} \left(\operatorname{cncat}(a:\mathcal{L}, \mathcal{R}) \right) = \operatorname{len} \left(\operatorname{a::} \operatorname{cncat}(\iota, n) \right)$$

$$= \operatorname{len} \left(\operatorname{cncat}(\iota, n) \right) + 1$$

$$= \operatorname{len} \left(\operatorname{L} \right) + \operatorname{le} \left(\mathcal{R} \right) + 1$$

$$= \operatorname{len} \left(\operatorname{L} \right) + \operatorname{le} \left(\mathcal{R} \right) + 1$$

$$= \operatorname{len} \left(\operatorname{a::} 1 \right) + 1$$

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.Inductive Step:Goal: Show that P(a :: L) is true

Let $R \in List$ be arbitrary. Then,

Length:

 $\frac{\text{len(nil)} := 0}{\text{len(a :: L)} := \text{len(L)} + 1}$

Concatenation:

concat(nil, R) := R
concat(a :: L, R) := a :: concat(L, R)

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$. Inductive Step: Goal: Show that P(a :: L) is true

Let $R \in List$ be arbitrary. Then, we can calculate len(concat(a :: L, R)) = len(a :: concat(L, R)) = 1 + len(concat(L, R)) = 1 + len(L) + len(R)= len(a :: L) + len(R)

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$. Inductive Step: Goal: Show that P(a :: L) is true

Let $R \in List$ be arbitrary. Then, we can calculatedef of concatlen(concat(a :: L, R)) = len(a :: concat(L, R))def of concat= 1 + len(concat(L, R))def of len= 1 + len(L) + len(R)IH= len(a :: L) + len(R)def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all $L \in List$.

Rooted Binary Trees

- Basis:
 is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

height(•) := 0

• height
$$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \right) := 1 + \max\{\text{height}(\mathbf{T}_1), \text{height}(\mathbf{T}_2)\}$$

Conclude that $\forall x \in S, P(x)$

1. Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and $2^{0+1}-1=2^1-1=1$ so P(•) is true.

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size(T_k) $\leq 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

Goal: Prove P(

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size(T_k) $\leq 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

size(λ_{T_1})

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

1. Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction. **2.** Base Case: size(\bullet)=1, height(\bullet)=0, and $2^{0+1}-1=2^{1}-1=1$ so P(\bullet) is true. **3.** Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size(T_k) $\leq 2^{\text{height}(T_k) + 1} - 1$ for k=1,2 Goal: Prove P(4. Inductive Step: By def, size(λ_1) =1+size(T₁)+size(T₂) $< 1+2^{height(T_1)+1}-1+2^{height(T_2)+1}-1$ by IH for T₁ and T₂ $< 2^{\text{height}(T_1)+1}+2^{\text{height}(T_2)+1}-1$ $\leq 2 \cdot \max(2^{\operatorname{height}(T_1)+1}, 2^{\operatorname{height}(T_2)+1}) - 1$ $\leq 2(2^{\max(\operatorname{height}(T_1),\operatorname{height}(T_2))+1})-1$ $\leq 2(2^{\text{height}}) - 1 \leq 2^{\text{height}} (2^{\text{height}}) + 1 - 1$

which is what we wanted to show.

5. So, the P(T) is true for all rooted binary trees by structural induction.