
CSE 311: Foundations of Computing

Lecture 17: Structural Induction

Midterm

• Midterm in class next Wednesday

• Covers material up to ordinary induction (HW5)

• Closed book, closed notes

– will provide reference sheets

• No calculators

– arithmetic is intended to be straightforward

– (only a small point deduction anyway)

Midterm

• 5 problems covering:

– Propositional Logic

Including circuits / Boolean algebra / normal forms

– Predicate Logic/English Translation

– Modular arithmetic

– Set theory

– Induction

• 10 minutes per problem

– write quickly, don’t get stuck on one problem

– focus on the overall structure of the solution

CSE 311: Foundations of Computing

Lecture 17: Structural Induction

Last time: Structural Induction

How to prove ∀ � ∈ �, �(�) is true:

Base Case: Show that �(
) is true for all specific
elements
 of � mentioned in the Basis step

Inductive Hypothesis: Assume that � is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that �(�) holds for each of the
new elements � constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that ∀ � ∈ �, �(�)

Last time: Using Structural Induction

• Let � be given by…

– Basis: 6 � �; 15 ∈ �

– Recursive: if �, � ∈ � then � + � ∈ �.

Claim: Every element of � is divisible by 3.

Last time: Every element of � is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x ∈ S by

structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true

for some arbitrary x,y ∈ S

4. Inductive Step: Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and

since P(y) is true, 3|y and so y=3n for some integer n.

Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈ S.

Basis: 6 � �; 15 ∈ �

Recursive: if �, � ∈ � then � + � ∈ �

More Structural Induction

• Let � be given by…

– Basis: 12 � �; 15 � �

– Recursive: if � ∈ �, then � + 6 ∈ � and � + 15 ∈ �

• Two base cases and two recursive cases, one

existing element.

Claim: � ⊆ � ; i.e. every element of � is also in �.

Proof needs structural induction using definition

of � since statement is of the form ∀� ∈ �. �(�)

Claim: Every element of � is in �. (� ⊆ �)

1. Let P(x) be “x ∈ S”. We prove that P(x) is true for all x ∈ R by

structural induction.

2. Base Case: (12): 6 ∈ S so 6+6=12 ∈ S by definition of S, so P(12)

(15): 15 ∈ S, so P(15) is also true

3. Ind. Hyp: Suppose that P(x) is true for some arbitrary x ∈ R

4. Inductive Step: Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have x ∈ S. Since 6 ∈ S from the recursive

step of S, we get x + 6 ∈ S, so P(x+6) is true, and since 15 ∈ S

we get x + 15 ∈ S, so P(x+15) is true.

5. Therefore P(x) (i.e., x ∈ S) for all x ∈ R by induction.

Basis: 6 � �; 15 ∈ �

Recursive: if �, � ∈ �,

then � + � ∈ �

Basis: 12 � �; 15 � �

Recursive: if � ∈ �, then � + 6 ∈ �

and � + 15 ∈ �

Recursive Definitions

• Recursively defined functions and sets are our

mathematical models of code and the data it uses

– recursively defined sets can be translated into Java

classes

– recursively defined functions can be translated into Java

functions

some (but not all) can be written more cleanly as loops

• Can now do proofs about CS-specific objects

Lists of Integers

• Basis: nil ∈ List

• Recursive step:

if L ∈ List and a ∈ ℤ,

then a :: L ∈ List

Examples:

– nil []

– 1 :: nil [1]

– 1 :: 2 :: nil [1, 2]

– 1 :: 2 :: 3 :: nil [1, 2, 3]

Functions on Recursively Defined Sets

Assume that the recursive definition of � gives a
unique way to construct every element of �.

We can define the values of a function � on �
recursively as follows:

Basis: Define �(
) for all specific elements
 of �
mentioned in the Basis step

Recursive Step: Define �(�) for each of the new
elements � constructed in terms of � applied to each
of the existing named elements mentioned in the
Recursive step

Functions on Lists

Length:

len(nil) := 0

len(a :: L) := len(L) + 1 for any L ∈ List and a ∈ Σ

Concatenation:

concat(nil, R) := R for any R ∈ List

concat(a :: L, R) := a :: concat(L, R) for any L, R ∈ List and

any a ∈ ℤ

Structural Induction

How to prove ∀ � ∈ �, �(�) is true:

Base Case: Show that �(
) is true for all specific
elements
 of � mentioned in the Basis step

Inductive Hypothesis: Assume that � is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that �(�) holds for each of the
new elements � constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that ∀ � ∈ �, �(�)

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List

Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .

We prove P(L) for all L ∈ List by structural induction.

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List

Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then,

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List

Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then,

len(concat(nil, R)) = len(R) def of concat

= 0 + len(R)

= len(nil) + len(R) def of len

Since R was arbitrary, P(nil) holds.

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List

Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R))

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List

Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R))

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Inductive Step: Goal: Show that P(a :: L) is true

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List

Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R))

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Inductive Step: Goal: Show that P(a :: L) is true

Let R ∈ List be arbitrary. Then,

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List

Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R))

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Inductive Step: Goal: Show that P(a :: L) is true

Let R ∈ List be arbitrary. Then, we can calculate

len(concat(a :: L, R)) = len(a :: concat(L, R)) def of concat

= 1 + len(concat(L, R)) def of len

= 1 + len(L) + len(R) IH

= len(a :: L) + len(R) def of len

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List

Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R ∈ List ” .

We prove P(L) for all L ∈ List by structural induction.

Base Case (nil): Let R ∈ List be arbitrary. Then, len(concat(nil, R))

= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈ List, i.e., len(concat(L, R)) = len(L) + len(R) for all R ∈ List.

Inductive Step: Goal: Show that P(a :: L) is true

Let R ∈ List be arbitrary. Then, we can calculate

len(concat(a :: L, R)) = len(a :: concat(L, R)) def of concat

= 1 + len(concat(L, R)) def of len

= 1 + len(L) + len(R) IH

= len(a :: L) + len(R) def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all L ∈ List.

Claim: len(concat(L, R)) = len(L) + len(R) for all L, R ∈ List

Rooted Binary Trees

• Basis: • is a rooted binary tree

• Recursive step:

If and are rooted binary trees,

then also is a rooted binary tree.

T
1

T
2

T
1

T
2

Defining Functions on Rooted Binary Trees

• size(•) := 1

• size () := 1 + size(T
1
) + size(T

2
)

• height(•) := 0

• height () := 1 + max{height(T
1
), height(T

2
)}

T
1

T
2

T
1

T
2

Last time: Structural Induction

How to prove ∀ � ∈ �, �(�) is true:

Base Case: Show that �(
) is true for all specific
elements
 of � mentioned in the Basis step

Inductive Hypothesis: Assume that � is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that �(�) holds for each of the
new elements � constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that ∀ � ∈ �, �(�)

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some

rooted binary trees T
1

and T
2
.

4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T
1

and T
2

≤ 2height(T1)+1+2height(T2)+1–1

≤ 2(2max(height(T1),height(T2))+1)–1

≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some

rooted binary trees T
1

and T
2
.

4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T
1

and T
2

≤ 2height(T1)+1+2height(T2)+1–1

≤ 2(2max(height(T1),height(T2))+1)–1

≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some

rooted binary trees T
1

and T
2
, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2

4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T
1

and T
2

≤ 2height(T1)+1+2height(T2)+1–1

≤ 2(2max(height(T1),height(T2))+1)–1

≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some

rooted binary trees T
1

and T
2
, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2

4. Inductive Step: Goal: Prove P().

size()

≤ 2height()+1 – 1

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some

rooted binary trees T
1

and T
2
, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2

4. Inductive Step: Goal: Prove P().

By def, size() =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T
1

and T
2

≤ 2height(T1)+1+2height(T2)+1–1

≤ 2·max(2height(T1)+1,2height(T2)+1)–1

≤ 2(2max(height(T1),height(T2))+1)–1

≤ 2(2height()) – 1 ≤ 2height()+1 – 1

which is what we wanted to show.

5. So, the P(T) is true for all rooted binary trees by structural induction.

