CSE 311.: Foundations of Computing

Lecture 17: Structural Induction

What's that Doctor McCluckles? Making them ovoid
would increase structural integrity and enable a more
comfortable delivery? He's right again Professor!

Midterm

 Midterm in class next Wednesday

* Covers material up to ordinary induction (HWb)

Closed book, closed notes
— will provide reference sheets

No calculators
— arithmetic is intended to be straightforward
— (only a small point deduction anyway)

Midterm

* 5 problems covering:
— Propositional Logic
Including circuits / Boolean algebra / normal forms
— Predicate Logic/English Translation
— Modular arithmetic
— Set theory

— Induction

10 minutes per problem
— write quickly, don’t get stuck on one problem
— focus on the overall structure of the solution

CSE 311.: Foundations of Computing

Lecture 17: Structural Induction

the
tujff

(oo

Last time: Structural Induction

How to prove V x € S, P(x) is true:
c O —

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)

Jastimme: Using Structural Induction

S

* Let S be given by... &
_Basis: 6¢5; 15€S 2l 1 O
— Recursive: if x,y €S thenx +y € §.

Claim: Every element of S is divisible by 3.

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x". We prove that P(x) is true for all x € S by
struc ural induction.

@ v
)

Basis: 6 <S;: 15€ S
Recursive: if x,y €S thenx+y €S

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x". We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Th) Ty

)@m\i ?(@

\

Basis: 6¢S5; 15€ S
Recursive: imthe@

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x". We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y €S

4. Inductive Step: |Goal: Show P(x+y)

Basis: 6S5; 15€§
Recursive: if x,y € S thenx +y €S

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x". We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) and P(y) are true

4. Inductive Step:

for some arbitrary x,y €S

Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.

5. Therefore by induction 3|x for all x € S.

Basis: 6S5; 15€§
Recursive: if x,y € S thenx +y €S

More Structural Induction

* Let R be given by...
—Basis: 12 R; 15 R
— Recursive: if x € R,thenx + 6 € Randx + 15 € R

 Two base cases and two recursive cases, one
existing element.

Claim: R € S;i.e. every element of R is also in S.

Iﬂr of n gqgs s}r%{g@al in ugil @?;mg gfipition

of R smce statement is rm Vx € R.P(x)

Claim: Every elementof Risin S. (R € 5)

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € R by
structural induction.

2. Base Case: (12): 6 € Sso 6+6=12 € S by definition of S, so P(12)
(15): 15 € S, so P(15) is also true
3. Ind. Hyp: Suppose that P(x) is true for some arbitrary x € R

4. Inductive Step:| Goal: Show P(x+6) and P(x+15)
Since P(x) holds, we have x € S. Since 6 € S from the recursive

step of S, we get x + 6 iil SO s true, and since 15 €S

wegetx+15€S, s s true.
5. Therefore P(x) (i.e., x € S) for all x € R by induction.

Basis: 6 S; 15€ S Basis: 12 R; 15 R
Recursive: if x,y € S, Recursive: if x € R,then\x + 6 €ER
thenx+y €S _ and/x +15€R

Recursive Definitions

* Recursively defined functions and sets are our
mathematical models of code and the data it uses

— recursively defined sets can be translated into Java
classes

— recursively defined functions can be translated into Java
functions

some (but not all) can be written more cleanly as loops

 Can now do proofs about CS-specific objects

Lists of Integers

e Basis: _r_1_1_1 € List

* Recursive step:
if L € List and a € Z,
then a:: L € List

Examples:
— nil]
— 1 ::nil 1]
— 2::1:nil 2, 1]
— 3:2:1 il 3, 2, 1]

Functions on Recursively Defined Sets

Assume that the recursive definition of S gives a
unique way to construct every element of §.

We can define the values of a function f on S
recursively as follows:

Basis: Define f(u) for all specific elements u of §
mentioned in the Basis step

Recursive Step: Define f(w) for each of the new
elements w constructed in terms of / applied to each
of the existing named elements mentioned in the

Recursive step

Functions on Lists

»Basis: nil € List
[Recursive step:

Length:
len(nil) :=0

len(a::L):=len(L) +1

Concatenation:
concat(nil, R) :=R

concat(a:: L, R) :=a:: concat(L, R)

if L € Listand a € Z,
then a:: L € List

foranyLe Listanda e Z

for any R € List
for any L, R € List and

any a eZ

. Basis» nil € List
Structural Induction il
| Recursive step:

if L € Listand a € Z,

How to prove V x € S, P(x) is trde: _
thena:: L € List

Base Case: Sho P(u) is trye for all specific
elements u of S mentioned in thie Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) hol of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)

Clg'gn: len(concat(L, R)) =len(L) + len(R) for all L, R € List
N

‘= k. Lo (X)) 2
PO £= Yhelet: laleeiDe

R AN

Length: Concatenation:
len(nil) :=0 concat(nil,R) :=R

len(a::L):=len(L) + 1 concat(a:: L, R) := a:: concat(L, R)

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We pro forall L € Llst by structural induction.

ﬁ?@/\t YL el WUOAUJ((W‘ %)
[Z/\UV\ £)U\ U;\

Length: Concatenation:
len(nil) :=0 concat(nil,R) :=R

len(a:: L) :=len(L) +1 concat(a:: L, R) := a :: concat(L, R)

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

el Q)Y = eal) bd bk ook

N\
M\
Length: Concatenation:
len(nil) :=0 concat(nil, R) :=R
len(a::L):=len(L) +1 concat(a:: L, R) := a:: concat(L, R)

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

len(concat(nil, R)) = len(R) def of concat
=0 + len(R)
= len(nil) + len(R) def of len

Since R was arbitrary, P(nil) holds.

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Conl Pém

:

=
Basis: nil € List

Recursive step:
if L € Listand a € Z,

then a:: L € List

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step: |Goal: Show that P(a :: L) is true

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.

Inductive Step:
Let R € List be arbitrary. Then,

Goal: Show that P(a :: L) is true ﬁé‘

Q\A(COU\CKJ/LOH [/ K k@u\(ad COA_CQ;(/LL)) uy\Ud

Length:

len(nil) :=0
len(a::L):=len(L) +1

LA by wb

- w) +\mw
b(\ IE concat(nil, R) :=R

concat(a :: L, R) := a:: concat(L, R)

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step: |Goal: Show that P(a :: L) is true

Let R € List be arbitrary. Then, we can calculate
len(concat(a:: L, R)) =len(a:: concat(L, R)) def of concat
= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
=len(a:: L) + len(R) def of len

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =9+ len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.
Inductive Step: |Goal: Show that P,(é D is true

Let R € List be arbitrary. Then, we can calculate
len(concat(a:: L, R)) =len(a:: concat(L, R)) def of concat
= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
=len(a:: L) + len(R) def of len
Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all L € List.

Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

Defining Functions on Rooted Binary Trees

size(¢):=1

:= 1 + size(T,) + size(T,)

) := 1 + max{height(T,), height(T,)}

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2height(M+1-1” We prove P(T) for all rooted

trees T by stru

size(¢) =1

= 1 + size(T,) + size(T,)

height(®) ::=0

" &%) == 1+ maxfheight(Ty), height(T,)}
. O 2 .

5
AL L T *

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.

Th P(Aﬂ nd PMQ

e

22N
o

r)\
N
iy

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightMJ+1 _ 1 for k=1,2

4. Inductive Step: Goal: Prove P(/\).

N

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heehtMI+1 1 for k=1,2

4. Inductive Step: Goal: Prove P(/\ .).

................

L\/ Lol ok SitL

..............

size(*) =1 bj g%l/ XL

u=1 + size(T,) + size(T,)

................

height(®) :=0

height (T1/\T2) ::= 1 + max{height(T,), height(T,)} 2he|ght(/\)+1 1

.............................

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heehtMI+1 1 for k=1,2
4. Inductive Step: Goal: Prove P(/\ .).

By def, S|ze(/\) 1+5|ze(T1)+5|ze(T2)

by IH for T, and T,
= @ 2height(T1)+1+2height(T2)+1_1
< 2.max(2height(T1)+1,2height(T2)+1)_1
< 2(2max(height(Tl),height(Tz))+1)_1
< 2(2he|ght(..,ﬁ..)) —1< 2he|ght(h_c_‘ +1 _ 1

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.

