
CSE 311: Foundations of Computing

Lecture 17:        Structural Induction



Midterm

• Midterm in class next Wednesday

• Covers material up to ordinary induction (HW5)

• Closed book, closed notes
– will provide reference sheets

• No calculators
– arithmetic is intended to be straightforward
– (only a small point deduction anyway)



Midterm

• 5 problems covering:
– Propositional Logic

Including circuits / Boolean algebra / normal forms

– Predicate Logic/English Translation
– Modular arithmetic
– Set theory
– Induction

• 10 minutes per problem
– write quickly, don’t get stuck on one problem
– focus on the overall structure of the solution



CSE 311: Foundations of Computing

Lecture 17:        Structural Induction



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Last time: Using Structural Induction

• Let 𝑆 be given by…
– Basis: 6 Î 𝑆; 15 ∈ 𝑆
– Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Claim:  Every element of 𝑆 is divisible by 3.



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈	S
4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6 Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆
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4. Inductive Step:  Goal:  Show P(x+y)
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Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈	S
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More Structural Induction

• Let 𝑅 be given by…
– Basis: 12 Î 𝑅; 15 Î 𝑅
– Recursive:  if 𝑥 ∈ 𝑅,	then 𝑥 + 6 ∈ 𝑅 and	𝑥 + 15 ∈ 𝑅

• Two base cases and two recursive cases, one 
existing element.

Claim: 𝑅 ⊆ 𝑆 ; i.e. every element of 𝑅 is also in 𝑆.

Proof needs structural induction using definition 
of 𝑅 since statement is of the form ∀𝑥 ∈ 𝑅. 𝑃(𝑥)



Claim: Every element of 𝑅 is in 𝑆.  (𝑅 ⊆ 𝑆)

1. Let P(x) be “x ∈	S”.  We prove that P(x) is true for all x ∈	R by  
structural induction.

2. Base Case: (12): 6 ∈	S so 6+6=12 ∈	S by definition of S, so P(12)
(15): 15 ∈	S, so P(15) is also true

3. Ind. Hyp:  Suppose that P(x) is true for some arbitrary x ∈	R
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)

Since P(x) holds, we have x ∈	S. Since 6 ∈	S from the recursive
step of S, we get x + 6 ∈	S, so P(x+6) is true, and since 15 ∈	S
we get x + 15 ∈	S, so P(x+15) is true.

5. Therefore P(x)  (i.e., x ∈	S) for all x ∈	R by induction.  
Basis: 6 Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,

then 𝑥 + 𝑦 ∈ 𝑆

Basis: 12 Î 𝑅; 15 Î 𝑅
Recursive:  if 𝑥 ∈ 𝑅, then 𝑥 + 6 ∈ 𝑅

and 𝑥 + 15 ∈ 𝑅



Recursive Definitions

• Recursively defined functions and sets are our 
mathematical models of code and the data it uses
– recursively defined sets can be translated into Java 

classes
– recursively defined functions can be translated into Java 

functions
some (but not all) can be written more cleanly as loops

• Can now do proofs about CS-specific objects



Lists of Integers

• Basis: nil ∈ List
• Recursive step: 

if L ∈ List and a ∈ ℤ,

then a	::	L ∈ List

Examples:
– nil []
– 1	::	nil [1]
– 2	::	1	::	nil [2, 1]
– 3	::	2	::	1	::	nil [3, 2, 1]



Functions on Recursively Defined Sets

Assume that the recursive definition of 𝑆 gives a 
unique way to construct every element of 𝑆.

We can define the values of a function 𝑓 on 𝑆
recursively as follows:

Basis: Define 𝑓(𝑢) for all specific elements 𝑢 of 𝑆
mentioned in the Basis step

Recursive Step:  Define 𝑓(𝑤) for each of the new 
elements 𝑤 constructed in terms of 𝑓 applied to each 
of the existing named elements mentioned in the 
Recursive step



Functions on Lists

Length:

len(nil)	:=	0
len(a	::	L)	:=	len(L)	+	1 for any L ∈	List and a ∈	ℤ

Concatenation:

concat(nil,	R) := R	 for any R ∈	List
concat(a	::	L,	R)	:=	a	::	concat(L,	R) for any L, R ∈	List and

any a ∈ ℤ



Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then,

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then,

len(concat(nil,	R))	=	len(R) def of concat
=	0	+	len(R)
=	len(nil)	+	len(R) def of len

Since R was arbitrary, P(nil) holds.

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step: Goal: Show that P(a	::	L) is true

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step: Goal: Show that P(a	::	L) is true

Let R ∈	List be arbitrary. Then, 

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step: Goal: Show that P(a	::	L) is true

Let R ∈	List be arbitrary. Then, we can calculate
len(concat(a	::	L,	R))	=	len(a	::	concat(L,	R)) def of concat

=	1	+	len(concat(L,	R)) def of len
=	1	+	len(L)	+	len(R) IH
=	len(a	::	L)	+	len(R) def of len

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step: Goal: Show that P(a	::	L) is true

Let R ∈	List be arbitrary. Then, we can calculate
len(concat(a	::	L,	R))	=	len(a	::	concat(L,	R)) def of concat

=	1	+	len(concat(L,	R)) def of len
=	1	+	len(L)	+	len(R) IH
=	len(a	::	L)	+	len(R) def of len

Since R was arbitrary, we have shown P(a	::	L).

By induction, we have shown the claim holds for all L ∈ List.

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Rooted Binary Trees

• Basis:  •    is a rooted binary tree
• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   

T1 T2

T1 T2



Defining Functions on Rooted Binary Trees

• size(•) := 1

• size ( ) := 1 + size(T1) + size(T2)

• height(•) := 0

• height ( ) := 1 + max{height(T1), height(T2)}

T1 T2

T1 T2



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2.
4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P( ).

size(             )

≤ 2height(            )+1 – 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P( ).

By def, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2·max(2height(T1)+1,2height(T2)+1)–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      )) – 1 ≤ 2height(            )+1 – 1

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.


