## CSE 311: Foundations of Computing

## Lecture 17:

## Structural Induction



What's that Doctor McCluckles? Making them ovoid would increase structural integrity and enable a more comfortable delivery? He's right again Professor!

## Midterm

- Midterm in class next Wednesday
- Covers material up to ordinary induction (HW5)
- Closed book, closed notes
- will provide reference sheets
- No calculators
- arithmetic is intended to be straightforward
- (only a small point deduction anyway)


## Midterm

- 5 problems covering:
- Propositional Logic

Including circuits / Boolean algebra / normal forms

- Predicate Logic/English Translation
- Modular arithmetic
- Set theory
- Induction
- 10 minutes per problem
- write quickly, don't get stuck on one problem
- focus on the overall structure of the solution


## CSE 311: Foundations of Computing

Lecture 17: Structural Induction

## Githe

## Last time: Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements $u$ of $S$ mentioned in the Basis step

Inductive Hypothesis: Assume that $P$ is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements $w$ constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

## mistime: Using Structural Induction

- Let $S$ be given by...
- Basis: $6 \in S ; 15 \in S$

- Recursive: if $x, y \in S$ then $x+y \in S$.

Claim: Every element of $S$ is divisible by 3.

## Claim: Every element of $S$ is divisible by 3 .

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.


Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$ then $x+y \in S$

## Claim: Every element of $S$ is divisible by 3 .

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true


Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$ then $x+y \in S$

## Claim: Every element of $S$ is divisible by 3 .

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$ then $x+y \in S$

## Claim: Every element of $S$ is divisible by 3 .

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Since $P(x)$ is true, $3 \mid x$ and so $x=3 m$ for some integer $m$ and since $P(y)$ is true, $3 \mid y$ and so $y=3 n$ for some integer $n$.
Therefore $x+y=3 m+3 n=3(m+n)$ and thus $3 \mid(x+y)$.
Hence $P(x+y)$ is true.
5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$ then $x+y \in S$

## More Structural Induction

- Let $R$ be given by...
- Basis: $12 \in R$; $15 \in R$
- Recursive: if $x \in R$, then $x+6 \in R$ and $x+15 \in R$
- Two base cases and two recursive cases, one existing element.

Claim: $R \subseteq S$; i.e. every element of $R$ is also in $S$.
Proof needs structural induction using defthition
of $R$ since statement is of the form $\forall x \in R . P(x)$

## Claim: Every element of $R$ is in $S .(R \subseteq S)$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in R$ by structural induction.
2. Base Case: (12): $6 \in S$ so $6+6=12 \in S$ by definition of $S$, so $P(12)$ (15): $15 \in S$, so $P(15)$ is also true
3. Ind. Hyp: Suppose that $P(x)$ is true for some arbitrary $x \in R$
4. Inductive Step: Goal: Show $P(x+6)$ and $P(x+15)$

Since $P(x)$ holds, we have $x \in S$. Since $6 \in S$ from the recursive step of $S$, we get $x+6 \in S$, so $P(x+6)$ is true, and since $15 \in S$ we get $x+15 \in S$, s@ $P(x+15)$ is true.
5. Therefore $P(x)$ (i.e., $x \in S$ ) for all $x \in R$ by induction.

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

Basis: $12 \in R ; 15 \in R$
Recursive: if $x \in R$, then $\widetilde{x}+6 \in R$ and $x+15 \in R$

## Recursive Definitions

- Recursively defined functions and sets are our mathematical models of code and the data it uses
- recursively defined sets can be translated into Java classes
- recursively defined functions can be translated into Java functions
some (but not all) can be written more cleanly as loops
- Can now do proofs about CS-specific objects


## Lists of Integers

- Basis: nil E List
- Recursive step:


## if $\mathrm{L} \in$ List and $\mathrm{a} \in \mathbb{Z}$, <br> then $\mathrm{a}: \mathrm{L} \in \operatorname{List}$

Examples:

- nil
- 1 :: nil
- 2 :: 1 :: nil
- 3 :: 2 :: 1 :: nil
[]
[1]
[2, 1]
[3, 2, 1]


## Functions on Recursively Defined Sets

Assume that the recursive definition of $S$ gives a unique way to construct every element of $S$.

We can define the values of a function $f$ on $S$ recursively as follows:

Basis: Define $f(u)$ for all specific elements $u$ of $S$ mentioned in the Basis step

Recursive Step: Define $f(w)$ for each of the new elements $w$ constructed in terms of $f$ applied to each of the existing named elements mentioned in the Recursive step

## Functions on Lists

Length:
$\longrightarrow$ Basis: nil $\in$ List Recursive step:
if $L \in$ List and $a \in \mathbb{Z}$, then a :: L $\in$ List

$$
\begin{aligned}
& \operatorname{len}(\text { nil }):=0 \\
& \operatorname{len}(\mathrm{a}:: \mathrm{L}):=\operatorname{len}(\mathrm{L})+1
\end{aligned}
$$

for any $\mathrm{L} \in$ List and $\mathrm{a} \in \mathbb{Z}$

Concatenation:

$$
\begin{aligned}
& \operatorname{concat}(\operatorname{nill}, \mathrm{R}):=\mathrm{R} \\
& \operatorname{concat}(\mathrm{a}:: \mathrm{L}, \mathrm{R}):=\mathrm{a}:: \operatorname{concat}(\mathrm{L}, \mathrm{R})
\end{aligned}
$$

for any $R \in$ List
for any $L, R \in$ List and any $a \in \mathbb{Z}$

## Structural Induction

## Recursive step:

if $L \in$ List and $a \in \mathbb{Z}$, then $\mathrm{a}:: \mathrm{L} \in$ List

Base Case: Show that $P(u)$ is true for all specific elements $u$ of $S$ mentioned in the Basis step

Inductive Hypothesis: Assume that $P$ is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements $w$ constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Claim: $\operatorname{len}(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R}) \quad$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

$$
\operatorname{len}(x)+\operatorname{len}(R)
$$

$\forall x \in l i s t$. $P(x)$
$\forall x$ list, $\forall R$ elise. ...


Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$
Let $P(L)$ be "len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

$$
\begin{array}{r}
P(\text { mi })=\forall R \text { G hit, } \operatorname{ten}(\operatorname{concar}(\text { mil }, R)) \\
=\operatorname{len}(\text { ail })+\operatorname{len}(R)
\end{array}
$$



Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R}) \quad$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$
Let $P(L)$ be "len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then,

$$
\begin{aligned}
\operatorname{len}\left(\operatorname { c o n } \left(\operatorname{at}\left(n_{i}\right)\right.\right. & R))
\end{aligned}=\ln (R) \text { by deft of concat }
$$

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R}) \quad$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $P(L)$ be "len(concat $(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then,

$$
\begin{array}{rlrl}
\operatorname{len}(\operatorname{concat}(\text { nil, } R)) & =\operatorname{len}(R) & & \text { def of con } \\
& =0+\operatorname{len}(R) & & \\
& =\operatorname{len}(n i l)+\operatorname{len}(R) \quad \text { def of len }
\end{array}
$$

Since R was arbitrary, P(nil) holds.

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $P(L)$ be "len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) $=\operatorname{len}(\mathrm{R})=0+\operatorname{len}(\mathrm{R})=\operatorname{len}($ nil $)+\operatorname{len}(\mathrm{R})$, showing $\mathrm{P}($ nil).
Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{L})$ is true for some arbitrary
$L \in \operatorname{List}$, i.e., len $(\operatorname{concat}(L, R))=\overline{\operatorname{len}}(L)+\operatorname{len}(R)$ for all $R \in \operatorname{List}$.


## Basis: nil $\in$ List

Recursive step:
If $\mathrm{L} \in$ List and $\mathrm{a} \in \mathbb{Z}$, then $\mathrm{a}: \mathrm{L} \in \operatorname{List}$

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R}) \quad$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $P(L)$ be "len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R))
$=\operatorname{len}(R)=0+\operatorname{len}(R)=\operatorname{len}($ nil $)+\operatorname{len}(R)$, showing $P($ nil $)$.
Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{L})$ is true for some arbitrary
$L \in$ List, i.e., len(concat $(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List. Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{a}:: \mathrm{L})$ is true

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R}) \quad$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $P(L)$ be "len(concat $(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R))
$=\operatorname{len}(\mathrm{R})=0+\operatorname{len}(\mathrm{R})=\operatorname{len}($ nil $)+\operatorname{len}(\mathrm{R})$, showing $\mathrm{P}($ nil).
Inductive Hypothesis: Assume that $P(L)$ is true for some arbitrary
$L \in \operatorname{List}$, ie., len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List. Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{a}:: \mathrm{L})$ is true Let $R \in$ List be arbitrary. Then,

```
Length:
    len(nil):=0
    len(a :: L) := len(L) + 1
```

$$
=\operatorname{len}(\operatorname{cosccant}(L R))+1 \text { by } \alpha \text { if of len }
$$

$$
=\operatorname{len}(L)+\operatorname{len}(R)+1
$$

Concatenation:

```
                                concat(nil, R) := R
                                concat(a :: L, R) := a :: concat(L, R)
```


## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $P(L)$ be "len(concat $(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) $=\operatorname{len}(\mathrm{R})=0+\operatorname{len}(\mathrm{R})=\operatorname{len}($ nil $)+\operatorname{len}(\mathrm{R})$, showing $\mathrm{P}($ nil $)$.
Inductive Hypothesis: Assume that $P(L)$ is true for some arbitrary
$L \in \operatorname{List}$, i.e., len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List. Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{a}:: \mathrm{L})$ is true

Let $R \in$ List be arbitrary. Then, we can calculate
$\operatorname{len}(\operatorname{concat}(\mathrm{a}:: \mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{a}::$ concat( $\mathrm{L}, \mathrm{R}))$
$=1+\operatorname{len}(\operatorname{concat}(\mathrm{L}, \mathrm{R}))$
$=1+\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$
$=\operatorname{len}(a:: L)+\operatorname{len}(R) \quad$ def of len

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $P(L)$ be "len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.
Base Case (nil) Let $R \in$ List be arbitrary. Then, len(concat(nil, R))
$=\operatorname{len}(R)=\theta+\operatorname{len}(R)=\operatorname{len}($ nil $)+\operatorname{len}(R)$, showing $P($ nil $)$.
Inductive Hypothesis: Assume that $P(L)$ is true for some arbitrary
$L \in \operatorname{List}$, i.e., len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List. Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{a}:: \mathrm{L})$ is true
Let $R \in$ List be arbitrary. Then, we can calculate

$$
\begin{aligned}
\operatorname{len}(\operatorname{concat}(\mathrm{a}:: \mathrm{L}, \mathrm{R})) & =\operatorname{len}(\mathrm{a}:: \operatorname{concat}(\mathrm{L}, \mathrm{R})) & & \text { def of concat } \\
& =1+\operatorname{len}(\operatorname{concat}(\mathrm{L}, \mathrm{R})) & & \operatorname{def} \text { of len } \\
& =1+\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R}) & & \text { IH } \\
& =\operatorname{len}(\mathrm{a}:: \mathrm{L})+\operatorname{len}(\mathrm{R}) & & \text { def of len }
\end{aligned}
$$

Since R was arbitrary, we have shown $\mathrm{P}(\mathrm{a}:: \mathrm{L})$.
By induction, we have shown the claim holds for all $L \in$ List.

## Rooted Binary Trees

- Basis: - is a rooted binary tree
- Recursive step:



## Defining Functions on Rooted Binary Trees

- size(•) := 1
- height(•) := 0


Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathbf{T}) \leq 2^{\text {height }(T)+1}-1$

$$
\begin{aligned}
& \forall x \in \text { Tree. Give }(x) \leq 2^{\operatorname{leq}^{2} \operatorname{cich}(x)+1}-1 \\
& P(x):=
\end{aligned}
$$

Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.


Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\bullet)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.

TH: $P\left(\begin{array}{l}\text { It }\end{array}\right)$ and
(a)

Goal:


## Claim: For every rooted binary tree $\mathrm{T}, \operatorname{size}(\mathrm{T}) \leq 2^{\text {height }(\mathrm{T})+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees $T$ by structural induction.
2. Base Case: size $(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees $T_{1}$ and $T_{2}$, i.e., size $\left(T_{k}\right) \leq 2^{\text {height }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:
Goal: Prove $P(\widehat{A})$.

Claim: For every rooted binary tree $\mathrm{T}, \operatorname{size}(\mathrm{T}) \leq 2^{\text {height (T) }+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: size $(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees $T_{1}$ and $T_{2}$, i.e., size $\left(T_{k}\right) \leq 2^{\text {height }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:

$$
\text { Goal: Prove } \mathrm{P}(\widehat{A})
$$

$$
\operatorname{size}(\widehat{t a})=1+\operatorname{site}\left(T_{1}\right)+\operatorname{sit}\left(T_{2}\right) \text { by deft of site }
$$

$$
\leqslant 1+2^{h(T)+1}-1+2^{h\left(T_{2}\right)+1}-1
$$

```
size(•) ::= 1
```

size(•) ::= 1
size ({

```
size ({
```

by $14 \times 2$
height( $\cdot$ ) ::= 0
height $(\widehat{A}):==1+$ max height $T_{1}$ ), height $\left.\left.\left(T_{2}\right)\right\} \leq 2^{\text {height }(~} \widehat{A}\right)+1$

Claim: For every rooted binary tree $\mathrm{T}, \operatorname{size}(\mathrm{T}) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees $T_{1}$ and $T_{2}$, i.e., size $\left(T_{k}\right) \leq 2^{\text {height }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:

By def, size $\left(\underset{\sim}{\text { a }}\right.$ ) $=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$

$$
\begin{array}{r}
\leq 1+2^{\text {height }\left(\mathbf{T}_{1}\right)+1}-1+2^{\text {height }\left(\mathbf{T}_{2}\right)+1}-1 \\
\text { by IH for } \mathbf{T}_{1} \text { and } \mathbf{T}_{2}
\end{array}
$$

$=$ 解 ${ }^{\text {height }\left(T_{1}\right)+1}+2^{\text {height }\left(T_{2}\right)+1}-1$
$\leq 2 \cdot \max \left(2^{\text {height }}\left(\mathrm{T}_{1}\right)+1,2^{\text {height }}\left(\mathrm{T}_{\mathbf{2}}\right)+1\right)-1$
$\leq 2\left(2^{\max \left(\text { height }\left(T_{1}\right), \text { height }\left(T_{2}\right)\right)+1}\right)-1$
$\leq 2\left(2^{\text {height }(A \lambda)}\right)-1 \leq 2^{\text {height }(A \lambda)+1}-1$
which is what we wanted to show.
5. So, the $P(T)$ is true for all rooted binary trees by structural induction.

