CSE 311: Foundations of Computing

Lecture 16: Recursively Defined Sets \& Structural Induction

Last time: Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$

Last Time: Upper Bound $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n "}$. We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer j from 0 to k.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

Case $k+1=1$: Then $f_{1}=1<2=2^{1}$ so $P(k+1)$ is true here.
Case $k+1 \geq 2$: Then $f_{k+1}=f_{k}+f_{k-1}$ by definition

$$
\begin{aligned}
& <2^{k}+2^{k-1} \text { by the IH since } k-1 \geq 0 \\
& <2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
\end{aligned}
$$

so $P(k+1)$ is true in this case.
These are the only cases so $P(k+1)$ follows.
5. Therefore by strong induction,
$f_{n}<2^{n}$ for all integers $n \geq 0$.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Inductive Proofs with Multiple Base Cases

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
2. "Base Cases:" Prove $P(b), P(b+1), \ldots, P(c)$
3. "Inductive Hypothesis:

Assume $P(k)$ is true for an arbitrary integer $k \geq c$,
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

(Strong) Inductive Proofs with Multiple Base Cases

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by strong induction."
2. "Base Cases:" Prove $P(b), P(b+1), \ldots, P(c)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq c$.
$P(j)$ is true for every integer j from b to k "
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. (that $P(b), \ldots, P(k)$ are true) and point out where you are using it.
(Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n " . ~ W e ~ p r o v e ~ t h a t ~} P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer j from 0 to k.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

Case $k+1=1$: Then $f_{1}=1<2=2^{1}$ so $P(k+1)$ is true here.
Case $k+1 \geq 2$: Then $f_{k+1}=f_{k}+f_{k-1}$ by definition

First case in
inductive step
didn't need IH

$$
\begin{aligned}
& <2^{k}+2^{k-1} \text { by the IH since } k-1 \geq 0 \\
& <2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
\end{aligned}
$$

so $P(k+1)$ is true in this case.
These are the only cases so $P(k+1)$ follows.
5. Therefore by strong induction, $f_{n}<2^{n}$ for all integers $n \geq 0$.

$$
\begin{aligned}
& \boldsymbol{f}_{\mathbf{0}}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } \boldsymbol{n} \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Cases: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 1$, we have $f_{j}<2^{j}$ for every integer j from 0 to k.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

We have $f_{k+1}=f_{k}+f_{k-1} \quad$ by definition since $k+1 \geq 2$

$$
\begin{aligned}
& <2^{k}+2^{k-1} \quad \text { by the IH since } k-1 \geq 0 \\
& <2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
\end{aligned}
$$

so $P(k+1)$ is true.
5. Therefore, by strong induction, $\mathrm{f}_{\mathrm{n}}<2^{\mathrm{n}}$ for all integers $\mathrm{n} \geq 0$.

| Two base cases, and two |
| :--- | :--- |
| previous values used |\longrightarrow| $\boldsymbol{f}_{\mathbf{0}}=\mathbf{0} \quad \boldsymbol{f}_{\mathbf{1}}=\mathbf{1}$ |
| :--- |
| $\boldsymbol{f}_{\boldsymbol{n}}=\boldsymbol{f}_{\boldsymbol{n - 1}}+\boldsymbol{f}_{n-2}$ | for all $\boldsymbol{n} \geq \mathbf{2}$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.

$$
\begin{array}{|l}
\text { Two base cases, and two } \\
\text { previous values used }
\end{array} \quad \longrightarrow \begin{aligned}
& \boldsymbol{f}_{\mathbf{0}}=\mathbf{0} \quad \boldsymbol{f}_{\mathbf{1}}=\mathbf{1} \\
& \boldsymbol{f}_{\boldsymbol{n}}=\boldsymbol{f}_{\boldsymbol{n}-\mathbf{1}}+\boldsymbol{f}_{\boldsymbol{n}-2} \text { for all } \boldsymbol{n} \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ holds

$$
f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1} \text { so } P(3) \text { holds }
$$

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ holds

$$
f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1} \text { so } P(3) \text { holds }
$$

3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 3, P(j)$ is true for every integer j from 2 to k.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ holds

$$
f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1} \text { so } P(3) \text { holds }
$$

3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 3, P(j)$ is true for every integer j from 2 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ holds

$$
f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1} \text { so } P(3) \text { holds }
$$

3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 3, P(j)$ is true for every integer j from 2 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

We have $f_{k+1}=f_{k}+f_{k-1} \quad$ by definition since $k+1 \geq 2$

$$
\begin{aligned}
& \geq 2^{\mathrm{k} / 2-1}+2^{(k-1) / 2-1} \quad \text { by the IH since } k-1 \geq 2 \\
& \geq 2^{(k-1) / 2-1}+2^{(k-1) / 2-1}=2^{(k-1) / 2}=2^{(k+1) / 2-1}
\end{aligned}
$$

so $P(k+1)$ is true.
5. Therefore by strong induction, $f_{n} \geq 2^{n / 2-1}$ for all integers $n \geq 2$.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

Why does this help us bound the running time of Euclid's Algorithm?

We already proved that $f_{n} \geq 2^{n / 2-1}$ so $f_{n+1} \geq 2^{(n-1) / 2}$
Therefore: if Euclid's Algorithm takes n steps
for $\operatorname{gcd}(a, b)$ with $a \geq b>0$
then $a \geq 2^{(n-1) / 2}$
so $(n-1) / 2 \leq \log _{2} a$ or $n \leq 1+2 \log _{2} a$
i.e., \# of steps $\leq 1+$ twice the \# of bits in a.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

An informal way to get the idea: Consider an n step gcd calculation starting with $r_{n+1}=a$ and $r_{n}=b$:

$$
\begin{aligned}
r_{n+1} & =q_{n} r_{n}+r_{n-1} \\
r_{n} & =q_{n-1} r_{n-1}+r_{n-2} \\
& \cdots \\
r_{3} & =q_{2} r_{2}+r_{1} \\
r_{2} & =q_{1} r_{1}+0_{0}
\end{aligned}
$$

For all $k \geq 2, r_{k-1}=r_{k+1} \bmod r_{k}$
"Euclid's algorithm is slowest on
Fibonacci numbers and it takes only n steps for $\operatorname{gcd}\left(\mathrm{f}_{\mathrm{n}+1}, \mathrm{f}_{\mathrm{n}}\right)$ "

Now $r_{1} \geq 1$ and each q_{k} must be ≥ 1. If we replace all the q_{k} 's by 1 and replace r_{1} by 1 , we can only reduce the r_{k} 's. After that reduction, $r_{k}=f_{k}$ for every k.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.
We go by strong induction on n.
Let $P(n)$ be " $g c d(a, b)$ with $a \geq b>0$ takes n steps $\rightarrow a \geq f_{n+1}$ " for all $n \geq 1$.
Base Case: $n=1$ Suppose Euclid's Algorithm with $a \geq b>0$ takes 1 step. By assumption, $a \geq b \geq 1=f$ so $P(1)$ holds.
$\mathrm{n}=2$ Suppose Euclid's Algorithm with $\mathrm{a} \geq \mathrm{b}>0$ takes 2 steps.
Then $a=q b+r$
$b=q^{\prime} r+0$ for $r \geq 1$.
Since $a \geq b>0$, we must have $q \geq 1$ and $b \geq 1$ so $a=q b+r \geq b+r \geq 1+1=2=f_{3}$ and $P(2)$ holds

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 2, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$

Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 2, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq j \leq k$

Inductive Step: Goal: if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ with $\mathrm{a} \geq \mathrm{b}>0$ takes $\mathrm{k}+1$ steps, then $\mathrm{a} \geq \mathrm{f}_{\mathrm{k}+2 \text {. }}$.
Since $k \geq 2$, if $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $k+1 \geq 3$ steps, the first 3 steps of Euclid's algorithm on a and b give us

$$
\begin{aligned}
& a=q b+r \\
& b=q^{\prime} r+r^{\prime} \\
& r=q^{\prime \prime} r^{\prime}+r^{\prime \prime}
\end{aligned}
$$

and there are k - 2 more steps after this. Note that this means that the $\operatorname{gcd}(\mathrm{b}, \mathrm{r})$ takes k steps and $\operatorname{gcd}\left(r, r^{\prime}\right)$ takes k - 1 steps.

So since $k, k-1 \geq 1$, by the IH we have $b \geq f_{k+1}$ and $r \geq f_{k}$.

Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 2, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq j \leq k$

Inductive Step: Goal: if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ with $\mathrm{a} \geq \mathrm{b}>0$ takes $\mathrm{k}+1$ steps, then $\mathrm{a} \geq \mathrm{f}_{\mathrm{k}+2 \text {. }}$.
Since $k \geq 2$, if $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $k+1 \geq 3$ steps, the first 3 steps of Euclid's algorithm on a and b give us

$$
\begin{aligned}
& a=q b+r \\
& b=q^{\prime} r+r^{\prime} \\
& r=q^{\prime \prime} r^{\prime}+r^{\prime \prime}
\end{aligned}
$$

and there are k - 2 more steps after this. Note that this means that the $\operatorname{gcd}(\mathrm{b}, \mathrm{r})$ takes k steps and $\operatorname{gcd}\left(r, r^{\prime}\right)$ takes k - 1 steps.

So since $k, k-1 \geq 1$, by the IH we have $b \geq f_{k+1}$ and $r \geq f_{k}$.
Also, since $a \geq b$, we must have $q \geq 1$.
So $a=q b+r \geq b+r \geq f_{k+1}+f_{k}=f_{k+2}$ as required.

Last time: Recursive definitions of functions

- $0!=1 ;(n+1)!=(n+1) \cdot n!$ for all $n \geq 0$.
- $F(0)=0 ; F(n+1)=F(n)+1$ for all $n \geq 0$.
- $G(0)=1 ; G(n+1)=2 \cdot G(n)$ for all $n \geq 0$.
- $H(0)=1 ; H(n+1)=2^{H(n)}$ for all $n \geq 0$.

Last time: Recursive definitions of functions

- Recursive functions allow general computation
- saw examples not expressible with simple expressions
- So far, we have considered only simple data
- inputs and outputs were just integers
- We need general data as well...
- these will also be described recursively
- will allow us to describe data of real programs
e.g., strings, lists, trees, expressions, propositions, ...
- We'll start simple: sets of numbers

Recursive Definitions of Sets (Data)

Natural numbers

Basis: $\quad 0 \in S$	
Recursive:	If $x \in S$, then $x+1 \in S$

Even numbers (≥ 0)
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Recursive Definition of Sets

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x+2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

We need the exclusion rule because otherwise $S=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Recursive Definitions of Sets

Natural numbers

Basis:	$0 \in S$
Recursive:	If $x \in S$, then $x+1 \in S$

Even numbers (≥ 0)
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$
Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis: $\quad(0,0) \in S,(1,1) \in S$
Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$, then $(n+1, x+y) \in S$.

Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$
Even numbers (≥ 0)
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$
Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis: $\quad(0,0) \in S,(1,1) \in S$
Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$, then $(n+1, x+y) \in S$.
"Indexed"
Fibonacci numbers
$\left\{\left(\mathrm{n}, \mathrm{f}_{\mathrm{n}}\right): \mathrm{n} \in \mathbb{N}\right\}$

Last time: Recursive definitions of functions

- Before, we considered only simple data
- inputs and outputs were just integers
- Proved facts about those functions with induction

$$
\begin{aligned}
& n!\leq n^{n} \\
& f_{n}<2^{n} \text { and } f_{n} \geq 2^{n / 2-1}
\end{aligned}
$$

- How do we prove facts about functions that work with more complex (recursively defined) data?
- we need a more sophisticated form of induction

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step. Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Structural induction follows from ordinary induction:

Define $Q(n)$ to be "for all $x \in S$ that can be constructed in at most n recursive steps, $P(x)$ is true."

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N}
Basis: $0 \in \mathbb{N}$
Recursive step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$

Using Structural Induction

- Let S be given by...
- Basis: $6 \in S ; 15 \in S$
- Recursive: if $x, y \in S$ then $x+y \in S$.

Claim: Every element of S is divisible by 3 .

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Since $P(x)$ is true, $3 \mid x$ and so $x=3 m$ for some integer m and since $P(y)$ is true, $3 \mid y$ and so $y=3 n$ for some integer n.
Therefore $x+y=3 m+3 n=3(m+n)$ and thus $3 \mid(x+y)$.
Hence $P(x+y)$ is true.
5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$ then $x+y \in S$

More Structural Induction

- Let R be given by...
- Basis: $12 \in R ; 15 \in R$
- Recursive: if $x \in R$, then $x+6 \in R$ and $x+15 \in R$
- Two base cases and two recursive cases, one existing element.

Claim: $R \subseteq S$; i.e. every element of R is also in S.
Proof needs structural induction using definition
of R since statement is of the form $\forall x \in R . P(x)$

Claim: Every element of R is in $S .(R \subseteq S)$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in R$ by structural induction.

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

Basis: $12 \in R ; 15 \in R$
Recursive: if $x \in R$, then $x+6 \in R$
and $x+15 \in R$

Claim: Every element of R is in $S .(R \subseteq S)$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in R$ by structural induction.
2. Base Case: (12): $6 \in S$ so $6+6=12 \in S$ by definition of S, so $P(12)$
(15): $15 \in S$, so $P(15)$ is also true

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

Basis: $12 \in R ; 15 \in R$
Recursive: if $x \in R$, then $x+6 \in R$
and $x+15 \in R$

Claim: Every element of R is in $S .(R \subseteq S)$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in R$ by structural induction.
2. Base Case: (12): $6 \in S$ so $6+6=12 \in S$ by definition of S, so $P(12)$
(15): $15 \in S$, so $P(15)$ is also true
3. Ind. Hyp: Suppose that $P(x)$ is true for some arbitrary $x \in R$
4. Inductive Step: Goal: Show $P(x+6)$ and $P(x+15)$

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

Basis: $12 \in R ; 15 \in R$
Recursive: if $x \in R$, then $x+6 \in R$ and $x+15 \in R$

Claim: Every element of R is in $S .(R \subseteq S)$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in R$ by structural induction.
2. Base Case: (12): $6 \in S$ so $6+6=12 \in S$ by definition of S, so $P(12)$ (15): $15 \in S$, so $P(15)$ is also true
3. Ind. Hyp: Suppose that $P(x)$ is true for some arbitrary $x \in R$
4. Inductive Step: Goal: Show $P(x+6)$ and $P(x+15)$

Since $P(x)$ holds, we have $x \in S$. Since $6 \in S$ from the recursive step of S, we get $x+6 \in S$, so $P(x+6)$ is true, and since $15 \in S$ we get $x+15 \in S$, so $P(x+15)$ is true.
5. Therefore $\mathrm{P}(\mathrm{x})$ (i.e., $\mathrm{x} \in \mathrm{S}$) for all $\mathrm{x} \in \mathrm{R}$ by induction.

Basis: $6 \in S ; 15 \in S$
Basis: $12 \in R ; 15 \in R$
Recursive: if $x, y \in S$, then $x+y \in S$

Recursive: if $x \in R$, then $x+6 \in R$ and $x+15 \in R$

