
CSE 311: Foundations of Computing

Lecture 15:  Recursion & Strong Induction 

Applications: Fibonacci & Euclid 

See Edstem post about 1-1 meetings 

with TAs not about current HW



Last class: Inductive Proofs In 5 Easy Steps

1. “Let �(�) be... . We will show that �(�) is true for all 

integers � ≥ � by induction.”

2. “Base Case:” Prove �(�)

3. “Inductive Hypothesis:

Assume that for some arbitrary integer � ≥ �,

�(�) is true” 

4. “Inductive Step:” Prove that �(� + 1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume �(� + 1) !!)

5. “Conclusion: �(�) is true for all integers � ≥ �”



Checkerboard Tiling

• Prove that a 2� 
� 2� checkerboard with one square 

removed can be tiled with:



Checkerboard Tiling

1. Let P(n) be “Any 2n
× 2n checkerboard with one square 

removed can be tiled with        ” .                                                

We prove P(n) for all n ≥ 1 by induction on n.



Checkerboard Tiling

1. Let P(n) be “Any 2n 
× 2n checkerboard with one square 

removed can be tiled with        ” .                                       

We prove P(n) for all n ≥ 1 by induction on n.

2. Base Case: n=1



Checkerboard Tiling

1. Let P(n) be “Any 2n 
× 2n checkerboard with one square 

removed can be tiled with        ” .                                       

We prove P(n) for all n ≥ 1 by induction on n.

2. Base Case: n=1

3. Inductive Hypothesis:  Assume P(k) for some  

arbitrary integer k≥1



Checkerboard Tiling

1. Let P(n) be “Any 2n 
× 2n checkerboard with one square 

removed can be tiled with        ” .                                       

We prove P(n) for all n ≥ 1 by induction on n.

2. Base Case: n=1

3. Inductive Hypothesis:  Assume P(k) for some  

arbitrary integer k≥1

4. Inductive Step: Prove P(k+1)

Apply IH to 

each quadrant 

then fill with 

extra tile.



Recall: Induction Rule of Inference

Domain: Natural Numbers

How do the givens prove P(5)?

�(0) �(1) �(2) �(3) �(4) �(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

� 0

∀� (� � ⟶ � � + 1 )

∴ ∀�  �(�)



Recall: Induction Rule of Inference

Domain: Natural Numbers

How do the givens prove P(5)?

�(0) �(1) �(2) �(3) �(4) �(5)
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We made it harder than we needed to ...

When we proved �(2) we knew BOTH �(0) and �(1)

When we proved �(3) we knew �(0) and �(1) and � 2

When we proved �(4) we knew �(0), �(1), � 2 , �(3)

etc.

That’s the essence of the idea of Strong Induction.



Strong Induction

� 0         ∀� ∀� 0 ≤ � ≤ � → � � → � � + 1

∴ ∀� �(�)



Strong Induction

Strong induction for � follows from ordinary induction for �

where

� � ∶=  ∀� 0 ≤ � ≤ � → � �

Note that � 0 = �(0) and �(� + 1) ≡ �(�)  ∧ � � + 1

and  ∀� � � ≡ ∀� �(�)

� 0         ∀� ∀� 0 ≤ � ≤ � → � � → � � + 1

∴ ∀� �(�)



Last class: Inductive Proofs In 5 Easy Steps

1. “Let �(�) be... . We will show that �(�) is true for all 

integers � ≥ � by induction.”

2. “Base Case:” Prove �(�)

3. “Inductive Hypothesis:

Assume that for some arbitrary integer � ≥ �,

�(�) is true” 

4. “Inductive Step:” Prove that �(� + 1) is true:
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Strong Inductive Proofs In 5 Easy Steps

1. “Let �(�) be... . We will show that �(�) is true for all 

integers � ≥ � by strong induction.”

2. “Base Case:” Prove �(�)

3. “Inductive Hypothesis:

Assume that for some arbitrary integer � ≥ �, 

   �(�) is true for every integer � from � to �”   

4. “Inductive Step:” Prove that �(� + 1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. (that �(�), … , �(�) are true)

and point out where you are using it.                           

(Don’t assume �(� + 1) !!)

5. “Conclusion: �(�) is true for all integers � ≥ �”



Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime 

factorization

48 =  2 • 2 • 2 • 2 • 3

591 = 3 • 197

45,523 = 45,523

321,950 = 2 • 5 • 5 • 47 • 137

1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

We use strong induction to prove that a factorization into

primes exists, but not that it is unique.



Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that

P(n) is true for all integers n ≥ 2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of primes. 

Therefore P(2) is true.

3. Inductive :  Suppose that for some arbitrary integer k ≥ 2, 

P(j) is true for every integer j between 2 and k

4. Inductive Step:

Goal:  Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime:  Then by definition k+1 is a product of primes

Case: k+1 is composite: Then k+1=ab for some integers a and b 

where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have

a = p1p2 ⋯ pm and b = q1q2 ⋯

for some primes p1,p2,..., pm, q1,q2,..., qn.

Thus, k+1 = ab = p1p2 ⋯ pmq1q2 ⋯ qn which is a product of primes. 

Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 

5. Thus P(n) is true for all integers n ≥ 2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.
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1. Let P(n) be “n is a product of some list of primes”.  We will show that
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2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 

Therefore P(2) is true.
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Strong Induction is particularly useful when...

...we need to analyze methods that on input � make 

a recursive call for an input different from � − 1.

e.g.:  Recursive Modular Exponentiation:

– For exponent � > 0 it made a recursive call with 

exponent j = �/2 when � was even or j = � − 1 when �

was odd.



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {

return 1;

} else if ((k % 2) == 0) {

long temp = FastModExp(a,k/2,modulus);

return (temp * temp) % modulus;

} else {

long temp = FastModExp(a,k-1,modulus);

return (a * temp) % modulus;

}

}

"#$mod ( = "$ mod (
#

mod (

"#$)*mod ( =  (" mod () · "2� mod (  mod ( 



Strong Induction is particularly useful when...

...we need to analyze methods that on input � make 

a recursive call for an input different from � − 1.

e.g.:  Recursive Modular Exponentiation:

– For exponent � > 0 it made a recursive call with 

exponent j = �/2 when � was even or j = � − 1 when �

was odd.

We won’t analyze this particular method by strong 

induction, but we could.   

However, we will use strong induction to analyze 

other functions with recursive definitions.



Recursive definitions of functions 

• 0! = 1;  (� + 1)! = (� + 1) · �! for all � ≥  0.

• .(0) = 0;   .(� + 1) = .(�) + 1 for all � ≥  0. 

• /(0) = 1;   /(� + 1) = 2 · /(�) for all � ≥  0. 

• 0(0) = 1;   0(� + 1) = 21 2 for all � ≥  0.



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all             

integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1∙0!=1∙1=1=11 so P(1) is true.

3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.

Prove �! ≤ �� for all � ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all             

integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1∙0!=1∙1=1=11 so P(1) is true.

3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.

4. Inductive Step:  

Goal:  Show P(k+1), i.e. show (k+1)! ≤ (k+1)k+1

(k+1)! = (k+1)∙k!            by definition of !

≤ (k+1)∙ kk by the IH

≤ (k+1)∙ (k+1)k since k ≥ 0

= (k+1)k+1

Therefore P(k+1) is true.

5. Thus P(n) is true for all n ≥ 1, by induction.

Prove �! ≤ �� for all � ≥ 1



More Recursive Definitions

Suppose that ℎ: ℕ → ℝ.  

Then we have familiar summation notation: 

∑ ℎ 8 = ℎ(0)9
:;9

∑ ℎ 8 = ℎ � + 1 + ∑ ℎ 82
:;9

2)*
:;9  for � ≥ 0

There is also product notation:  

∏ ℎ 8 = ℎ(0)9
:;9

∏ ℎ 8 = ℎ(� + 1) · ∏ ℎ 82
:;9

2)*
:;9 for � ≥ 0



Fibonacci Numbers

=9 = 0

=* = 1

=2 = =2>* + =2># for all � ≥ 2



Fibonacci Numbers

=9 = 0

=* = 1

=2 = =2>* + =2># for all � ≥ 2

=2 mi  ≈  =2)* km



Bounding Fibonacci I:  =2 < 22 for all � ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≤ 2k+1

Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

≤ 2k + 2k-1 by the IH

≤ 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D
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Bounding Fibonacci I:  =2 < 22 for all � ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

< 2k + 2k-1 by the IH since k-1 ≥ 0            

< 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

These are the only cases so P(k+1) follows.

5. Therefore by strong induction, 

fn < 2n for all integers n ≥ 0.
@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D
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< 2k + 2k-1 by the IH since k-1 ≥ 0

< 2k + 2k = 2∙2k 

= 2k+1

so P(k+1) is true in this case.

These are the only cases so P(k+1) follows. @A = A      @B = B

@C = @C>B + @C>D for all C ≥ D



Bounding Fibonacci I:  =2 < 22 for all � ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

< 2k + 2k-1 by the IH since k-1 ≥ 0            

< 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

These are the only cases so P(k+1) follows.

5. Therefore by strong induction, 

fn < 2n for all integers n ≥ 0.
@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D



Inductive Proofs with Multiple Base Cases

1. “Let �(�) be... . We will show that �(�) is true for all 

integers � ≥ � by induction.”

2. “Base Cases:” Prove �(�), �(� + 1), …, �(E)

3. “Inductive Hypothesis:

Assume �(�) is true for an arbitrary integer � ≥ E”   

4. “Inductive Step:” Prove that �(� + 1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume �(� + 1) !!)

5. “Conclusion: �(�) is true for all integers � ≥ �”



Inductive Proofs With Multiple Base Cases

1. “Let �(�) be... . We will show that �(�) is true for all 

integers � ≥ � by strong induction.”

2. “Base Cases:” Prove �(�), �(� + 1), …, �(E)

3. “Inductive Hypothesis:

Assume that for some arbitrary integer � ≥ E, 

   �(�) is true for every integer � from � to �”   

4. “Inductive Step:” Prove that �(� + 1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. (that �(�), … , �(�) are true)

and point out where you are using it.                           

(Don’t assume �(� + 1) !!)

5. “Conclusion: �(�) is true for all integers � ≥ �”



Bounding Fibonacci I:  =2 < 22 for all � ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

< 2k + 2k-1 by the IH since k-1 ≥ 0            

< 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

These are the only cases so P(k+1) follows.

5. Therefore by strong induction, 

fn < 2n for all integers n ≥ 0.
@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D

Original Version

First case in 

inductive step 

didn’t need IH



Bounding Fibonacci I:  =2 < 22 for all � ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Cases: f0 = 0 < 1 = 20 so P(0) is true.

f1 = 1 < 2 = 21 so P(1) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

We have fk+1 = fk +  fk-1 by definition since k+1 ≥ 2

< 2k + 2k-1 by the IH since k-1 ≥ 0                     

< 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true.

5. Therefore, by strong induction, fn < 2n for all integers n ≥ 0.

@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D

Multiple Base Case Version

Two base cases

Smallest base caseLargest base case

Two base cases, and two 

previous values used



Bounding Fibonacci II:  =2 ≥ 22 #⁄  > * for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D

Two base cases, and two 

previous values used



Bounding Fibonacci II:  =2 ≥ 22 #⁄  > * for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds

f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D



Bounding Fibonacci II:  =2 ≥ 22 #⁄  > * for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds

f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 3, P(j) is true for every integer j from 2 to k.

@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D



Bounding Fibonacci II:  =2 ≥ 22 #⁄  > * for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds

f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D



Bounding Fibonacci II:  =2 ≥ 22 #⁄  > * for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds

f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

We have fk+1 = fk +  fk-1 by definition since k+1 ≥ 2

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2

≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

so P(k+1) is true.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 2.

@A = A      @B = B

@C = @C>B + @C>D for all C ≥ D



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0.  Then, " ≥ =2)*.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0.  Then, " ≥ =2)*.

Why does this help us bound the running time of Euclid’s 

Algorithm?

We already proved that =2 ≥ 22 #⁄  > * so =2)* ≥ 2(2>*) #⁄

Therefore: if Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0

then " ≥ 2(2>*) #⁄

so (� − 1)/2 ≤ log# " or � ≤ 1 + 2 log# "

i.e., # of steps ≤ 1 + twice the # of bits in ".



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0.  Then, " ≥ =2)*.

An informal way to get the idea: Consider an n step gcd

calculation starting with rn+1=a and rn=b:

rn+1 =   qnrn +  rn-1

rn = qn-1rn-1 + rn-2

…

r3 =   q2r2 + r1

r2 =   q1r1 + 0

Now r1 ≥ 1 and each qk must be ≥ 1.    If we replace all the

qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.  

After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk

“Euclid’s algorithm is slowest on           

Fibonacci numbers and it takes 

only n steps for gcd(fn+1,fn)”f0



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0.  Then, " ≥ =2)*.

We go by strong induction on n.  

Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 1 step. 

By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

n=2   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 2 steps.

Then a = q b  + r

b = q’ r + 0 for r ≥ 1. 

Since a ≥ b > 0, we must have q ≥ 1 and b ≥1 so

a = qb + r ≥ b + r ≥ 1+1 = 2 = f3 and P(2) holds

Induction Hypothesis: Suppose that for some integer k ≥ 2, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k ≥ 2, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 

Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Since k ≥ 2, if gcd(a,b) with a ≥ b>0 takes k+1 ≥ 3 steps, the first 3

steps of Euclid’s algorithm on a and b give us

a = q b + r

b  = q’ r + r’ 

r  = q” r’ + r”

and there are k-2 more steps after this. Note that this means that 

the gcd(b, r) takes k steps and gcd(r, r’) takes k-1 steps.

So since k, k-1 ≥ 1, by the IH we have b ≥ fk+1 and r ≥ fk.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k ≥ 2, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 

Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Since k ≥ 2, if gcd(a,b) with a ≥ b>0 takes k+1 ≥ 3 steps, the first 3

steps of Euclid’s algorithm on a and b give us

a = q b + r

b  = q’ r + r’ 

r  = q” r’ + r”

and there are k-2 more steps after this. Note that this means that 

the gcd(b, r) takes k steps and gcd(r, r’) takes k-1 steps.

So since k, k-1 ≥ 1, by the IH we have b ≥ fk+1 and r ≥ fk.

Also, since a ≥ b, we must have q ≥ 1. 

So a = q b + r ≥ b + r ≥ fk+1+ fk= fk+2 as required.


