CSE 311: Foundations of Computing

Lecture 15: Recursion \& Strong Induction Applications: Fibonacci \& Euclid

See Edstem post about 1-1 meetings with TAs not about current HW

And another thing . . . I want you to be more assertive! l'm tired of everyone calling you Alexander the

Last class: Inductive Proofs In 5 Easy Steps

$\sqrt{1}$. "Let $P(n)$ be... We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
${ }^{\prime}$ 2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq b$,

$$
P(k) \text { is true" }
$$

4. "Inductive Step:" Prove that $P(k+1)$ is true:
$c \quad U s e$ the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Checkerboard Tiling

- Prove that a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with:

Checkerboard Tiling

1. Let $P(n)$ be "Any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \square " We prove $P(n)$ for all $n \geq 1$ by induction on n.

$$
\text { Bare Cave }(n=1): 2^{7} \times 2^{\prime}
$$

Checkerboard Tiling

1. Let $P(n)$ be "Any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \qquad ".
We prove $P(n)$ for all $n \geq 1$ by induction on n.
2. Base Case: $n=1$
3. Induct Hypothail: Supper that $\mathbb{R}(k)$ if true

Checkerboard Tiling

1. Let $P(n)$ be "Any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \square ". We prove $P(n)$ for all $n \geq 1$ by induction on n.
2. Base Case: $\mathrm{n}=1$

3. Inductive Hypothesis: Assume $P(k)$ for some arbitrary integer $k \geq 1$

Checkerboard Tiling

1. Let $P(n)$ be "Any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \square ". We prove $P(n)$ for all $n \geq 1$ by induction on n.
2. Base Case: $\mathrm{n}=1$ \square

3. Inductive Hypothesis: Assume $P(k)$ for some arbitrary integer $k \geq 1$
4. Inductive Step: Prove $P(k+1)$

Apply IH to each quadrant then fill with extra tile.

Recall: Induction Rule of Inference

Domain: Natural Numbers

$$
\begin{gathered}
\begin{array}{c}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow} P(k+1)) \\
\therefore \forall n P(n)
\end{array}, ~\left(\frac{1}{2}\right)
\end{gathered}
$$

How do the givens prove $P(5)$?

Recall: Induction Rule of Inference

Domain: Natural Numbers

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall P P(n)
\end{gathered}
$$

How do the givens prove $P(5)$?

We made it harder than we needed to ...
When we proved $P(2)$ we knew BOTH $P(0)$ and $P(1)$
When we proved $P(3)$ we knew $P(0)$ and $P(1)$ and $P(2)$
When we proved $P(4)$ we knew $P(0), P(1), P(2), P(3)$
etc.
That's the essence of the idea of Strong Induction.

Strong Induction

$$
\frac{P(0) \quad \forall k(\forall j(0 \leq j \leq k \rightarrow P(j)) \rightarrow P(k+1))}{\substack{\text { all kooluer } \\ \text { next } \\ \text { value } \\ \text { n } \\ \therefore \forall n P(n)}}
$$

Strong Induction

$$
\frac{Q(h)}{\therefore(0) \quad \forall k(\overparen{\forall j(0 \leq j \leq k \rightarrow P(j)) \rightarrow P(k+1))}}
$$

Strong induction for P follows from ordinary induction for Q where

$$
Q(k):=\forall j(0 \leq j \leq k \rightarrow P(j))
$$

Note that $Q(0)=P(0)$ and $Q(k+1) \equiv Q(k) \wedge P(k+1)$ and $\forall n Q(n) \equiv \forall n P(n)$

Last class: Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq b$,

$$
P(k) \text { is true" }
$$

4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Strong Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by strong induction."
2. "Base Case:" Prove $P(b) \uparrow$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq b$,
$P(j)$ is true for every integer $\underset{\sim}{j}$ from \underline{b} to k "
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. (that $P(b), \ldots, P(k)$ are true) and point out where you are using it.
(Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime factorization

$$
\begin{aligned}
& 48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
& 591=3 \cdot 197 \\
& 45,523=45,523 \\
& 321,950=2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
& 1,234,567,890=2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{aligned}
$$

We use strong induction to prove that a factorization into primes exists, but not that it is unique.

Every integer ≥ 2 is a product of (one or more) primes.

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $\mathrm{P}(\mathrm{n})$ be " n is a product of some list of primes". We will show that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $P(n)$ be " n is a product of some list of primes". We will show that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $\mathrm{P}(2)$ is true.
Tadudive Hepothey: Assume flat for sons orbiting integer $k \geqslant 2$
That P(j)istme for all integer y with
$2 \leqslant j \leqslant k$
see that every integer fin 2 to h is puduct of prises.

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $P(n)$ be " n is a product of some list of primes". We will show that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $P(n)$ be " n is a product of some list of primes". We will show that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $P(k+1)$; i.e. $k+1$ is a product of primes

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $P(n)$ be " n is a product of some list of primes". We will show that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $P(k+1)$; i.e. $k+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $P(n)$ be " n is a product of some list of primes". We will show that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $P(k+1)$; ie. $k+1$ is a product of primes

Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes
Case: $k+1$ is composite: Then $k+1=a b$ for some integers a and b where $2 \leq a, b \leq k$.

$P(d)$ hot true

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $P(n)$ be " n is a product of some list of primes". We will show that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $P(k+1)$; i.e. $k+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes
Case: $k+1$ is composite: Then $k+1=a b$ for some integers a and b where $2 \leq a, b \leq k$. By our IH, $P(a)$ and $P(b)$ are true so we have

$$
a=\frac{p_{1} p_{2} \cdots p_{r} \text { and } b=q_{1} q_{2} \cdots q_{s}}{\text { for some primes } p_{1}, p_{2}, \cdots, p_{r}, q_{1}, q_{2}, \ldots, q_{s}}
$$

Thus, $k+1=a b=p_{1} p_{2} \cdots p_{r} q_{1} q_{2} \cdots q_{s}$ which is a product of primes. Since $k \geq 2$, one of these cases must happen and so $P(k+1)$ is true.

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $P(n)$ be " n is a product of some list of primes". We will show that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $P(k+1)$; i.e. $k+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes
Case: $k+1$ is composite: Then $k+1=a b$ for some integers a and b where $2 \leq a, b \leq k$. By our IH, $P(a)$ and $P(b)$ are true so we have

$$
\begin{aligned}
& a=p_{1} p_{2} \cdots p_{r} \text { and } b=q_{1} q_{2} \cdots q_{s} \\
& \quad \text { for some primes } p_{1}, p_{2}, \cdots, p_{r}, q_{1}, q_{2}, \cdots, q_{s}
\end{aligned}
$$

Thus, $k+1=a b=p_{1} p_{2} \cdots p_{r} q_{1} q_{2} \cdots q_{s}$ which is a product of primes. Since $k \geq 2$, one of these cases must happen and so $P(k+1)$ is true.
5. Thus $P(n)$ is true for all integers $n \geq 2$, by strong induction.

Strong Induction is particularly useful when...

...we need to analyze methods that on input k make a recursive call for an input different from $k-1$.
e.g.: Recursive Modular Exponentiation:

- For exponent $k>0$ it made a recursive call with exponent $\mathrm { j } = k \longdiv { 2 }$ when k was even or $\mathrm{j}=k-1$ when k was odd.

Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) {
        long temp = FastModExp(a/k/2),modulus);
        return (temp * temp) % modulus;
        } else {
        long temp = FastModExp(a,,k-1,mbdulus);
        return (a * temp) % modulus;
}
}
\[
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
\]
```


Strong Induction is particularly useful when...

...we need to analyze methods that on input k make a recursive call for an input different from $k-1$.
e.g.: Recursive Modular Exponentiation:

- For exponent $k>0$ it made a recursive call with exponent $\mathrm{j}=k / 2$ when k was even or $\mathrm{j}=k-1$ when k was odd.

We won't analyze this particular method by strong induction, but we could.
However, we will use strong induction to analyze other functions with recursive definitions.

Recursive definitions of functions

- $0!=1$; $(n+1)!=(n+1) \cdot n!$ for all $n \geq 0$.
- $F(0)=0 ; F(n+1)=F(n)+1$ for all $n \geq 0$.

$$
\therefore F(n)^{-}=n
$$

- $G(0)=1 ; G(n+1)=2 \cdot G(n)$ for all $n \geq 0$.

$$
\therefore G(n)=2^{n}
$$

- $H(0)=1 ; H(n+1)=2^{H(n)}$ for all $n \geq 0$.

$$
H(n)=2^{2} / \operatorname{lheq}^{-2} n
$$

Prove $n!\leq n^{n}$ for all $n \geq 1$

1. Let $P(n)$ be " $n!\leq n$ ". We will show that $P(n)$ is true for all integers $n \geq 1$ by induction.
2. Base Case ($n=1$): $1!=1 \cdot 0!=1 \cdot 1=1=1^{1}$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 1$. I.e., suppose $k!\leq k^{k}$.

Prove $n!\leq n^{n}$ for all $n \geq 1$

1. Let $P(n)$ be " n ! n ny. We will show that $P(n)$ is true for all integers $n \geq 1$ by induction.
2. Base Case $(n=1)$: $1!=1 \cdot 0!=1 \cdot 1=1=1^{1}$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 1$. l.e., suppose $k!\leq k^{k}$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $(k+1)!\leq(k+1)^{k+1}$

$$
\begin{aligned}
(k+1)! & =(k+1) \cdot k! & & \text { by definition of ! } \\
& \leq(\underbrace{(k+1) \cdot k^{k}} & & \text { by the IH } \\
& \leq(k+1) \cdot(k+1)^{k} & & \text { since } k \geq 0 \\
& =(k+1)^{k+1} & &
\end{aligned}
$$

Therefore $P(k+1)$ is true.
5. Thus $P(n)$ is true for all $n \geq 1$, by induction.

More Recursive Definitions

Suppose that $h: \mathbb{N} \rightarrow \mathbb{R}$.
Then we have familiar summation notation:
$\sum_{i=0}^{0} h(i)=h(0)$
$\sum_{i=0}^{n+1} h(i)=h(n+1)+\sum_{i=0}^{n} h(i)$ for $n \geq 0$
There is also product notation:
$\prod_{i=0}^{0} h(i)=h(0)$
$\prod_{i=0}^{n+1} h(i)=h(n+1) \cdot \prod_{i=0}^{n} h(i)$ for $n \geq 0$
$n!=\prod_{i=1}^{n} \quad n \geq 1$

Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$

Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$

Tamás Görbe
@TamasGorbe
A Mathematician's Way* of Converting Miles to Kilometers
$3 \mathrm{mi} \approx 5 \mathrm{~km}$
$5 \mathrm{mi} \approx 8 \mathrm{~km} \quad f_{n} \mathrm{mi} \approx f_{n+1} \mathrm{~km}$
$8 \mathrm{mi} \approx 13 \mathrm{~km}$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n "}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2}
\end{aligned} \text { for all } n \geq \mathbf{2}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.

$$
\begin{aligned}
& \boldsymbol{f}_{\mathbf{0}}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{\boldsymbol{n}}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } \boldsymbol{n} \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer j from 0 to k. $p(n+1)$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n "}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer j from 0 to k.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n "}$. We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer j from 0 to k.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=1 \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer j from 0 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1}<2^{k+1}$

Case $k+1=1$: Then $f_{1}=1<2=2^{1}$ so $P(k+1)$ is true here.
Case $k+1 \geq 2$:

$$
\begin{aligned}
& f_{n+1}=f_{k}+f_{n-1}^{f_{n}}<2^{k}<2^{k-1} \\
& 2^{k}+2^{k-1}<2^{k+}+2^{k}=2^{h+1} \\
& \quad \rightarrow \begin{array}{l}
f_{0}=0 \quad f_{1}=1 \\
f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{array}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n "}$. We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer j from 0 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1}<2^{k+1}$

Case $k+1=1$: Then $f_{1}=1<2=2^{1}$ so $P(k+1)$ is true here.
Case $k+1 \geq 2$: Then $f_{k+1}=f_{k}+f_{k-1}$ by definition

$$
\begin{aligned}
& <2^{k}+2^{k-1} \text { by the IH since } k-1 \geq 0 \\
& <2^{k}+2^{k}=2 \cdot 2^{k} \\
& =2^{k+1}
\end{aligned}
$$

so $P(k+1)$ is true in this case.
These are the only cases so $P(k+1)$ follows.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer j from 0 to k.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

Case $k+1=1$: Then $f_{1}=1<2=2^{1}$ so $P(k+1)$ is true here.
Case $k+1 \geq 2$: Then $f_{k+1}=f_{k}+f_{k-1}$ by definition

$$
\begin{aligned}
& <2^{k}+2^{k-1} \text { by the IH since } k-1 \geq 0 \\
& <2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
\end{aligned}
$$

so $P(k+1)$ is true in this case.
These are the only cases so $P(k+1)$ follows.
5. Therefore by strong induction,
$f_{n}<2^{n}$ for all integers $n \geq 0$.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

