CSE 311: Foundations of Computing
Lecture 14: Induction

Read pinned Eostem port on backward r reasoning

Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
- It only applies over the natural numbers
- The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) \{ ... \}
- Show $\mathrm{P}(\mathrm{i})$ holds after i times through the loop

Prove $\forall a, b, m>0 \forall k \in \mathbb{N}\left((a \equiv b(\bmod m)) \rightarrow\left(a^{k} \equiv b^{k}(\bmod m)\right)\right.$ \sim
Let $a, b, m>0$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary.
Suppose that $a \equiv b(\bmod m)$.
We know that by multiplying congruences we get

$$
(a \equiv b(\bmod m) \wedge a \equiv b(\bmod m)) \rightarrow a^{2} \equiv b^{2}(\bmod m)
$$

Then, repeating this many times, we have:

$$
\begin{aligned}
&\left(a^{2} \equiv b^{2}(\bmod m) \wedge a \equiv b(\bmod m)\right) \rightarrow a^{3} \equiv b^{3}(\bmod m) \\
&\left(a^{3} \equiv b^{3}(\bmod m)\right.\wedge a \equiv b(\bmod m)) \rightarrow a^{4} \equiv b^{4}(\bmod m) \\
& \cdots \\
&\left(a^{k-1} \equiv b^{k-1}(\bmod m) \wedge a \equiv b(\bmod m)\right) \rightarrow a^{k} \equiv b^{k}(\bmod m)
\end{aligned}
$$

The "..." is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

$$
P(0) j
$$

$$
\begin{gathered}
P(0) \\
\forall k(P \underline{(k) \xrightarrow{\longrightarrow} P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\begin{aligned}
& 1 \quad \begin{array}{l}
1 \quad P(0) \\
2 \forall k(P(k) \xrightarrow{\rightarrow} P(k+1)) \\
\therefore \forall n P(n)
\end{array}
\end{aligned}
$$

How do the givens prove $P(5)$?

$$
P(1) \cap \quad P<1
$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\begin{aligned}
& P(0) \\
& \frac{\forall k(P(k) \rightarrow P(k+1))}{\therefore \forall n P(n)}
\end{aligned}
$$

How do the givens prove $P(5)$?

First, we have $\mathrm{P}(0)$.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.
Since $P(0)$ is true and $P(0) \rightarrow P(1)$, by Modus Ponens, $P(1)$ is true.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.
Since $P(1)$ is true and $P(1) \rightarrow P(2)$, by Modus Ponens, $P(2)$ is true.

Using The Induction Rule In A Formal Proof

$$
\begin{aligned}
& \frac{P(0)}{\forall k(P(k) \rightarrow P(k+1))} \\
& \text { 1. } P(\partial) \\
& \text { 4. } \forall n P(n) \\
& \text { 5. } \forall n P(n) \rightarrow P(k) B y \text { Induct } f_{n} 1, Y
\end{aligned}
$$

Using The Induction Rule In A Formal Proof

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

1. $\mathrm{P}(0)$
\geq - Let we be arkitry

$$
\text { 3. } \quad P(a) \rightarrow P(a+1)
$$

$$
\text { 4. } \quad \forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))
$$

5. $\forall \mathrm{nP}(\mathrm{n})$

$$
\begin{aligned}
& \text { 3:1 Pal Axupton } \\
& 3.100 p(a+1) \\
& \text { Into } \forall=3
\end{aligned}
$$

Using The Induction Rule In A Formal Proof

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

1. $\mathrm{P}(\mathrm{O})$
2. Let k be an arbitrary integer ≥ 0
3. $P(k) \rightarrow P(k+1)$
4. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \quad$ Intro $\forall: 2,3$
5. $\forall \mathrm{nP}(\mathrm{n})$

Induction: 1, 4

Using The Induction Rule In A Formal Proof

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\longrightarrow} P(k+1))
\end{gathered}
$$

$$
\therefore \forall n P(n)
$$

3. $P(k) \rightarrow P(k+1)$
4. $\forall k(P(k) \rightarrow P(k+1))$
5. $\forall \mathrm{nP}(\mathrm{n})$

Assumption

Direct Proof Rule Intro $\forall: 2,3$
Induction: 1, 4

Translating to an English Proof

$P(0)$
$\forall k(P(k) \xrightarrow{\longrightarrow} P(k+1))$
$\therefore \forall n P(n)$

1. Prove P(0)	Base Case	
2. Let k be an arbitrary integer ≥ 0 3.1. Suppose that $P(k)$ is true		Inductive Hypothesis
3.2. ... 3.3. Prove $P(k+1)$ is true		Inductive Step
3. $P(k) \rightarrow P(k+1)$ 4. $\forall k(P(k) \rightarrow P(k+1))$ 5. $\forall \mathrm{nP}(\mathrm{n})$		ct Proof Rule
		$\forall: 2,3$
		tion: 1, 4

Translating to an English Proof

Conclusion
Induction English Proof Template
[...Define $P(n)$...]
We will show that $P(n)$ is true for every $n \in \mathbb{N}$ by Induction.
Base Case: [...proof of $P(0)$ here...]
Induction Hypothesis:
\quad Suppose that $P(k)$ is true for an arbitrary $k \in \mathbb{N}$.
Induction Step:
\quad [...proof of $P(k+1)$ here...]
The proof of $P(k+1)$ must invoke the IH somewhere.
So, the claim is true by induction.

Inductive Proofs In 5 Easy Steps

Proof:

Dan'f wnte

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for every $n \geq 0$ by Induction."
2. "Base Case:" Prove $P(0)$
3. "Inductive Hypothesis:

Suppose $P(k)$ is true for an arbitrary integer $k \geq 0$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true.

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: Result follows by induction"

What is $1+2+4+\ldots+2^{n}$?

- 1
- $1+2$
- $1+2+42^{2} 2^{n} 2^{3}$
- $1+2+4+8$
- $1+2+4+8+\underbrace{}_{2^{n+1}}=31$

It sure looks like this sum is $2^{n+1}-1$
How can we prove it?
We could prove it for $n=1, n=2, n=3, \ldots$ but that would literally take forever.
Good that we have induction!

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1 \quad \forall n \in \mathbb{N}$
Prot 1. Let $P(n)$ be " $2^{0}+2+\cdots+2^{n}=2^{n+1}-1 "$ "
we will pave $P(n)$ for all $n \in \mathbb{N}$ bi inducts.
2 Bare (are:
$2^{0}=1^{\text {LAC }} \quad 2^{D+1}-1^{2+1}=2^{1}-1$

$$
2^{0}=1=2-1=2^{0+1}-1<2^{0}=2^{0+1}-1 \text { so } \bar{P}^{\circ}(0)^{2} \text { is }=1
$$

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime \prime}$. We will show $P(n)$ is true for all natural numbers by induction.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Inductive Hypother:i: Afseme Sapir that $P(\underline{h})$ is
true for sue arbitrivy $k \in \mathbb{N}$,
(that is: $2^{0}+2^{1}+\cdots+2^{h}=2^{k+1}-1$)
4. Ioduciv Step: Goal: Prove $P(k+1)$

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $\quad 2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, ie., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

Goal: Show $P(k+1)$, ie. show $2^{0}+2^{1}+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$

$$
\begin{aligned}
2^{0}+2^{1}+\cdots 2^{n} & =2^{n+1}-1 \quad k_{y} I+1 \\
\Rightarrow \quad 2^{0}+2^{1}+\cdots \cdot 2^{n}+2^{n+1} & =2^{n+1} 2^{n+1}-1 \\
& =\frac{2^{n+1}-1}{} \\
& =2^{n+2}-1
\end{aligned}
$$

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

$$
2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1 \text { by lH }
$$

Adding 2^{k+1} to both sides, we get:

$$
2^{0}+\sqrt[2^{1}]{ }+\ldots+2^{k}+2^{k+1}=2^{k+1}+2^{k+1}-1
$$

Note that $2^{k+1}+2^{k+1}=2\left(2^{k+1}\right)=2^{k+2}$.
 exactly $\mathrm{P}(\mathrm{k}+1)$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

We can calculate

$$
\begin{aligned}
2^{0}+2^{1}+\ldots+2^{k}+2^{k+1} & =\left(2^{0}+2^{1}+\ldots+2^{k}\right)+2^{k+1} \\
& =\left(\begin{array}{l}
\left(2^{k+1}-1\right)+2^{k+1} \\
\\
\\
=2\left(2^{k+1}\right)-1 \\
\\
\end{array} 2^{k+2}-1,\right.
\end{aligned} \text { by the IH }
$$

which is exactly $\mathrm{P}(\mathrm{k}+1)$.
Alternative way of writing the inductive step

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

We can calculate

$$
\begin{aligned}
2^{0}+2^{1}+\ldots+2^{k}+2^{k+1} & =\left(2^{0}+2^{1}+\ldots+2^{k}\right)+2^{k+1} \\
& =\left(2^{k+1}-1\right)+2^{k+1}
\end{aligned}
$$

by the IH
which is exactly $\mathrm{P}(\mathrm{k}+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

04
Prove $1+2+3+\ldots+n=n(n+1) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers b by induction.
2 Bare (ate:
$\quad 4=0-++0=0$
RS. $O(0+1) / 2=0$
$\therefore P(0)$ isth

$$
\sum_{i=0}^{\infty} i=0
$$

Summation Notation

$$
\sum_{i=0}^{n} i=0+1+2+3+\ldots+n
$$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 0=0(0+1) / 2$. Therefore $P(0)$ is true.

Summation Notation

$$
\sum_{i=0}^{n} i=0+1+2+3+\ldots+n
$$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. Ie., suppose $\underset{1}{1+2+\ldots+k=k(k+1) / 2}$

$$
\begin{aligned}
& 0+1+\cdots+k+h+1 \\
& \text { "some" or "an" } \downarrow \\
& k \frac{(k+1)}{2}+k+1 \text { not any! Ito } \\
& =(h+1]\left[\frac{k}{2}+1\right] \\
& =(k+1)\left(\frac{k+2}{2}\right) \therefore P(k+1)
\end{aligned}
$$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$
4. Induction Step:

$$
\begin{aligned}
1+2+\ldots+k+(k+1) & =(1+2+\ldots+k)+(k+1) \\
& =k(k+1) / 2+(k+1) \text { by IH } \\
& =(k+1)(k / 2+1) \\
& =(k+1)(k+2) / 2
\end{aligned}
$$

So, we have shown $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$, which is exactly $\mathrm{P}(\mathrm{k}+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

Induction: Changing the start line

- What if we want to prove that $P(n)$ is true for all integers $n \geq b$ for some integer b ?
- Define predigate $Q(k)=P(k+b)$ for all k.
- Then $\forall n Q(n) \equiv \forall n \geq b P(n)$
- Ordinary induction for Q :
- Prove $Q(0) \equiv P(b)$
- Prove

$$
\forall k(Q(k) \rightarrow Q(k+1)) \equiv \underset{\uparrow}{\forall k \geq b(P(k) \rightarrow P(k+1))}
$$

Inductive Proofs starting at \boldsymbol{b} in 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume $P(k)$ is true for an arbitrary integer $k \geq b^{\prime \prime}$
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by induction.

$$
2 \text { Bursa Cur }(n=2): \quad \begin{aligned}
& 3^{2}=9 \\
& \therefore
\end{aligned} 3^{2} \geqslant 2^{2}+3^{2}+3=7
$$

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true. 3 Inヘ Hys

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime}$. We will show $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq$ 2.l.e., suppose $3^{k} \geq k^{2}+3$.

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. Ie., suppose $3^{k} \geq k^{2}+3$.
4. Inductive Step:

Goal: Show $P(k+1)$, ie. shop $\left(3^{k+}\right) \geq(k+1)^{2}+3=ん$

$$
\begin{aligned}
& \geqslant 3\left(n^{2}+8\right) \text { by }+4 . \\
& =32^{2}+4
\end{aligned}
$$

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^{k} \geq k^{2}+3$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $3^{k+1} \geq(k+1)^{2}+3=k^{2}+2 k+4$

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^{k} \geq k^{2}+3$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $3^{k+1} \geq(k+1)^{2}+3=k^{2}+2 k+4$

$$
\begin{aligned}
3^{k+1} & =3\left(3^{k}\right) \\
& \geq 3\left(k^{2}+3\right) \text { by the IH } \\
& =3 k^{2}+9 \\
& =k^{2}+2 k^{2}+9 \geqslant k^{2}+2 h+Y=(h+1)^{2}+3 \\
& \geq k^{2}+2 k+4=(k+1)^{2}+3 \text { since } k \geq 2 .
\end{aligned}
$$

Therefore $P(k+1)$ is true.

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case $(n=2): \quad 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^{k} \geq k^{2}+3$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $3^{k+1} \geq(k+1)^{2}+3=k^{2}+2 k+4$

$$
\begin{aligned}
3^{k+1} & =3\left(3^{k}\right) \\
& \geq 3\left(k^{2}+3\right) \text { by the IH } \\
& =k^{2}+2 k^{2}+9 \\
& \geq k^{2}+2 k+4=(k+1)^{2}+3 \text { since } k \geq 2 .
\end{aligned}
$$

Therefore $P(k+1)$ is true.
5. Thus $P(n)$ is true for all integers $n \geq 2$, by induction.

