CSE 311: Foundations of Computing

Lecture 13: Set Theory

"Eraser fight!!"

Last class: Some Common Sets

\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$
\mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. $1,-17,32 / 48, \pi, \sqrt{2}$
[\mathbf{n}] is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$ when \mathbf{n} is a natural number $\varnothing=\{ \}$ is the empty set; the only set with no elements

Last class: Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B}:=\forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Notes:
$(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)$
$A \supseteq B$ means $B \subseteq A$
$A \subset B$ means $A \subseteq B$ but $A \neq B$

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
$$

$\varnothing \subseteq A ?$	QUESTIONS
$A \subseteq B ?$	
$C \subseteq B ?$	

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Another way to write domain restriction.
We will use a shorthand for restriction to a set

$$
\forall x \in A, P(x):=\forall x(x \in A \rightarrow P(x))
$$

Restricting all quantified variables improves clarity

Sets \& Logic

Building Sets from Predicates

Every set S defines a predicate " $x \in S$ ".

We can also define a set from a predicate P :

$$
S:=\{x: P(x)\}
$$

$S=$ the set of all x (in some universe U) for which $P(x)$ is true

In other words... $x \in S \leftrightarrow P(x)$

Proofs About Sets

$$
A:=\{x: P(x)\} \quad B:=\{x: Q(x)\}
$$

Suppose we want to prove $A \subseteq B$.

This is a predicate:

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Typically: use direct proof of the implication

Proofs About Sets

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
A:=\{x: P(x)\} \quad B:=\{x: Q(x)\}
$$

Prove that $A \subseteq B$ for $\mathrm{P}(x):=" x>2$ " and $\mathrm{Q}(x):=" x^{2}>3$ "
Proof: Let x be an arbitrary object (in the universe). Suppose that $x \in A$. By definition, this means $P(x)$.
... Therefore $x>2$ so $x^{2}>4$ which implies $x^{2}>3$.
Thus, we have $Q(x)$. By definition, this means $x \in B$.
Since x was arbitrary, we have shown, by definition, that $A \subseteq B$.

Operations on Sets

Set Operations

$$
A \cup B:=\{x:(x \in A) \vee(x \in B)\} \text { Union }
$$

$A \cap B:=\{x:(x \in A) \wedge(x \in B)\}$ Intersection
$A \backslash B:=\{x:(x \in A) \wedge(x \notin B)\}$ Set Difference

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

QUESTIONS
Using A, B, C and set operations, make...
[6] =
$\{3\}=$
$\{1,2\}=$

More Set Operations

$A \bigoplus B:=\{x:(x \in A) \oplus(x \in B)\}$
Symmetric Difference
$\bar{A}=A^{C}:=\{x: x \in U \wedge x \notin A\}$ (with respect to universe U)

Complement

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
$$

Equivalently $x \in \bar{A} \leftrightarrow x \notin A \leftrightarrow \neg(x \in A)$

$$
\begin{aligned}
& A \bigoplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

Set Complement

Erik Brynjolfsson
@erikbryn
It's remarkable that as recently as 11 years ago, the sum of all human knowledge could be provided in just two books.

1:55 PM • Sep 10, 2021

De Morgan's Laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$.

Thus, we have $x \in \bar{A} \cap \bar{B}$.

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

Thus, we have $x \in \bar{A} \cap \bar{B}$.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, we have $x \in \bar{A} \cap \bar{B}$.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $x \in \bar{A}$ and $x \in \bar{B}$.
Then $x \in \bar{A} \cap \bar{B}$ by the definition of intersection.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in \bar{A}$ and $x \in \bar{B}$ by the definition of complement, and then $x \in \bar{A} \cap \bar{B}$ by the definition of intersection.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$, or equivalently $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. Thus, we have $x \in \bar{A}$ and $x \in \bar{B}$ by the definition of complement, and then $x \in \bar{A} \cap \bar{B}$ by the definition of intersection.

```
To show C= D show
x\in\textrm{C}->x\in\textrm{D}\mathrm{ and}
x\in\textrm{D}->x\in\textrm{C}
```


De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B} \ldots$. Then, $x \in \bar{A} \cap \bar{B}$.
(\Leftrightarrow) Suppose that $x \in \bar{A} \cap \bar{B}$. Then, by the definition of intersection, we have $x \in \bar{A}$ and $x \in \bar{B}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in \overline{A \cup B}$, by the definition of complement.

Proofs About Set Equality

A lot of repetitive work to show \rightarrow and \leftarrow.

Do we have a way to prove \leftrightarrow directly?

Recall that $P \equiv Q$ and $(P \leftrightarrow Q) \equiv T$ are the same

We can use an equivalence chain to prove that a biconditional holds.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
The stated biconditional holds since:

$$
\begin{aligned}
& x \in \overline{A \cup B} \quad \equiv \neg(x \in A \cup B) \quad \text { Def of Comp } \\
& \equiv \neg(x \in A \vee x \in B) \quad \text { Def of Union } \\
& \equiv \neg(x \in A) \wedge \neg(x \in B) \quad \text { De Morgan } \\
& \equiv x \in \bar{A} \wedge x \in \bar{B} \\
& \equiv x \in \bar{A} \cap \bar{B} \\
& \text { Def of Comp } \\
& \text { Def of Union }
\end{aligned}
$$

Since x was arbitrary, we have shown the sets are equal.

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

It's Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic equivalence into "=" relationship between sets by replacing U with \vee, \cap with \wedge, and complement with \neg.
"Proof": Let x be an arbitrary object.
The stated bi-condition holds since:
$x \in$ left side $\quad \equiv$ replace set ops with propositional logic
三 apply Propositional Logic equivalence
\equiv replace propositional logic with set ops
$\equiv x \in$ right side
Since x was arbitrary, we have shown the sets are equal. \square

It's Boolean Algebra Again!

- Usual notation used in circuit design
- Boolean algebra
- a set of elements B containing $\{0,1\}$
- binary operations \{ + , • \}
- and a unary operation \{'\}
- such that the following axioms hold:
+ is U
- is \cap

0 is \varnothing
1 is universe
A^{\prime} is \bar{A}

For any $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in B :

1. closure:
2. commutativity:
3. associativity:
4. distributivity:
5. identity:
6. complementarity:
7. null:
8. idempotency:
9. involution:
```
a+b}\mathrm{ is in B
a+b=b+a
a+(b+c)=(a+b)+c
a+(b-c)=(a+b) • (a + c)
a+0=a
a+a'=1
a+1=1
a+a=a
(a')' = a
```

```
\(a \cdot b\) is in \(B\)
\(a \cdot b=b \cdot a\)
\(a \cdot(b \cdot c)=(a \cdot b) \cdot c\)
\(a \cdot(b+c)=(a \cdot b)+(a \cdot c)\)
a-1 = a
a• \(a^{\prime}=0\)
a• \(0=0\)
\(\mathrm{a} \cdot \mathrm{a}=\mathbf{a}\)
```


Note on Proofs of Set Equality

Even though it was overly tedious in the De Morgan case...
... the best strategy for proving other cases of set equality $\boldsymbol{A}=\boldsymbol{B}$ is often:

Let x be an arbitrary object.
Show $A \subseteq B$: Assume that $x \in A$ and show that $x \in B$
Show $B \subseteq A$: Assume that $x \in B$ and show that $x \in A$

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A):=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=$?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A):=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{\mathrm{M}, \mathrm{W}, \mathrm{F}\},\{\mathrm{M}, \mathrm{W}\},\{\mathrm{M}, \mathrm{F}\},\{\mathrm{W}, \mathrm{F}\},\{\mathrm{M}\},\{\mathrm{W}\},\{\mathrm{F}\}, \varnothing\}$
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A):=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{\mathrm{M}, \mathrm{W}, \mathrm{F}\},\{\mathrm{M}, \mathrm{W}\},\{\mathrm{M}, \mathrm{F}\},\{\mathrm{W}, \mathrm{F}\},\{\mathrm{M}\},\{\mathrm{W}\},\{\mathrm{F}\}, \varnothing\}$
$\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing$

Cartesian Product

$$
A \times B:=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, $(2, a),(2, b),(2, c)\}$.

Cartesian Product

$$
A \times B:=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\text { If } \begin{array}{r}
A=\{1,2\}, B=\{a, b, c\}, \text { then } A \times B=\begin{array}{r}
\{(1, a),(1, b),(1, c), \\
\\
(2, a),(2, b),(2, c)\} .
\end{array}
\end{array}
$$

What is $A \times \varnothing$?

Cartesian Product

$$
A \times B:=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, $(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \emptyset=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathrm{F}\}=\varnothing$

Russell's Paradox

$$
S:=\{x: x \notin x\}
$$

Suppose that $S \in S$...

Russell's Paradox

$S:=\{x: x \notin x\}$

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."

Representing Sets Using Bits

- Suppose that universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B

What is characteristic vector for $A \cup B ? A \cap B$?

Bitwise Operations

01101101
$\checkmark 00110111$
01111111
00101010 Java: $\mathbf{z = x \& y}$

- 00001111

00001010
$01101101 \quad$ Java: $\quad \mathbf{z}=\mathbf{x}^{\wedge} \mathbf{y}$
$\oplus 00110111$
01011010

A Useful Identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
- What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathbf{C}=\mathbf{m} \oplus \mathrm{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

