CSE 311: Foundations of Computing

Lecture 13: Set Theory

Last class: Some Common Sets

N is the set of **Natural Numbers**; N = {0, 1, 2, ...} Z is the set of **Integers**; Z = {..., -2, -1, 0, 1, 2, ...} Q is the set of **Rational Numbers**; e.g. ½, -17, 32/48 R is the set of **Real Numbers**; e.g. 1, -17, 32/48, π , $\sqrt{2}$ [**n**] is the set {1, 2, ..., n} when **n** is a natural number \emptyset = {} is the **empty set**; the *only* set with no elements • A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

• Notes: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$ $A \supseteq B \text{ means } B \subseteq A$ $A \subseteq B \text{ means } A \subseteq B \text{ but } A \neq B$ A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

A =
$$\{1, 2, 3\}$$

B = $\{3, 4, 5\}$
C = $\{3, 4\}$

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

Another way to write domain restriction.

We will use a shorthand for restriction to a set

$$\forall x \in A, P(x) := \forall x (x \in A \rightarrow P(x))$$

Restricting all quantified variables improves *clarity*

Sets & Logic

Every set S defines a predicate " $x \in S$ ".

We can also define a set from a predicate P:

$$S := \{x : P(x)\}$$

S = the set of all x (in some universe U) for which P(x) is true

In other words... $x \in S \leftrightarrow P(x)$

Proofs About Sets

A :=
$$\{x : P(x)\}$$
 B := $\{x : Q(x)\}$

Suppose we want to prove $A \subseteq B$.

This is a predicate:

$$A \subseteq B := \forall x \ (x \in A \rightarrow x \in B)$$

Typically: use direct proof of the implication

 $A \subseteq B := \forall x (x \in A \rightarrow x \in B)$

Operations on Sets

$$A \cup B := \{ x : (x \in A) \lor (x \in B) \}$$
 Union
$$A \cap B := \{ x : (x \in A) \land (x \in B) \}$$
 Intersection
$$A \setminus B := \{ x : (x \in A) \land (x \notin B) \}$$
 Set Difference

$$A \bigoplus B := \{ x : (x \in A) \bigoplus (x \in B) \}$$
 Symmetric
Difference

 $\boldsymbol{\Delta}$

$$\overline{A} = A^C := \{ x : x \in U \land x \notin A \}$$

(with respect to universe U) A har or A complement

Equivalently
$$x \in \overline{A} \leftrightarrow x \notin A \leftrightarrow \neg (x \in A)$$

 $A \bigoplus B = \{3, 4, 6\}$ $\overline{A} = \{4, 5, 6\}$

B = {1, 2, 4, 6} Universe: U = {1, 2, 3, 4, 5, 6}

 $A = \{1, 2, 3\}$

Set Complement

Erik Brynjolfsson 🤣 @erikbryn

It's remarkable that as recently as 11 years ago, the sum of all human knowledge could be provided in just two books.

1:55 PM · Sep 10, 2021

...

De Morgan's Laws

$\overline{A \cup B} = \overline{A} \cap \overline{B}$

$\overline{A\cap B}=\bar{A}\cup\bar{B}$

De Morgan's Laws

Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$ Formally, prove $\forall x, (x \in A \cup \overline{B} \leftrightarrow x \in \overline{A} \cap \overline{B})$ **Proof:** Let x be an arbitrary object. (\Rightarrow) Suppose that $x \in A \cup B$. Proof technique: Thus, we have $x \in A \cap \overline{B}$. To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Proof: Let *x* be an arbitrary object.

(⇒) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

Thus, we have $x \in \overline{A} \cap \overline{B}$.

. . .

Proof: Let x be an arbitrary object.

(⇒) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

Thus, we have
$$x \in \overline{A} \cap \overline{B}$$
.

...

...

Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$ Formally, prove $\forall x \ (x \in \overline{A \cup B} \leftrightarrow x \in \overline{A} \cap \overline{B})$

Proof: Let x be an arbitrary object.

(⇒) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

Thus, $x \in \overline{A}$ and $x \in \overline{B}$. Then $x \in \overline{A} \cap \overline{B}$ by the definition of intersection.

Proof: Let *x* be an arbitrary object.

(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$ $(x \in A) \land \neg(x \in B)$, so $x \in \overline{A}$ and $x \in \overline{B}$ by the definition of complement, and then $x \in \overline{A} \cap \overline{B}$ by the definition of intersection.

Proof: Let *x* be an arbitrary object.

(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$, or equivalently $\neg(x \in A) \land \neg(x \in B)$ by De Morgan's law. Thus, we have $x \in \overline{A}$ and $x \in \overline{B}$ by the definition of complement, and then $x \in \overline{A} \cap \overline{B}$ by the definition of intersection.

To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Proof: Let *x* be an arbitrary object.

(⇒) Suppose that $x \in \overline{A \cup B}$ Then, $x \in \overline{A} \cap \overline{B}$.

(\Leftarrow) Suppose that $x \in \overline{A} \cap \overline{B}$. Then, by the definition of intersection, we have $x \in \overline{A}$ and $x \in \overline{B}$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in \overline{A \cup B}$, by the definition of complement.

A lot of *repetitive* work to show \rightarrow and \leftarrow .

Do we have a way to prove \leftrightarrow directly?

Recall that $P \equiv Q$ and $(P \leftrightarrow Q) \equiv T$ are the same

We can use an equivalence chain to prove that a biconditional holds.

Ch

are

like

Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$ Formally, prove $\forall x \ (x \in \overline{A \cup B} \leftrightarrow x \in \overline{A} \cap \overline{B})$

Proof: Let *x* be an arbitrary object.

The stated biconditional holds since:

$$x \in \overline{A \cup B} \equiv \neg (x \in A \cup B)$$
 Def of Comp

$$\equiv \neg (x \in A \lor x \in B)$$
 Def of Union

$$\equiv \neg (x \in A) \land \neg (x \in B)$$
 De Morgan

$$\equiv x \in \overline{A} \land x \in \overline{B}$$
 Def of Comp

$$\equiv x \in \overline{A} \land x \in \overline{B}$$
 Def of Comp

$$\equiv x \in \overline{A} \land \overline{B}$$
 Def of Comp
Def of Comp

Since x was arbitrary, we have shown the sets are equal.

Distributive Laws

Meta-Theorem: Translate any Propositional Logic equivalence into "=" relationship between sets by replacing U with V, \cap with Λ , and complement with \neg .

"**Proof**": Let x be an arbitrary object.

The stated bi-condition holds since:

- $x \in \text{left side} \equiv \text{replace set ops with propositional logic}$
 - \equiv apply Propositional Logic equivalence
 - \equiv replace propositional logic with set ops

 $\equiv x \in right side$

Since x was arbitrary, we have shown the sets are equal.

It's Boolean Algebra Again!

- Usual notation used in circuit design
- Boolean algebra
 - a set of elements B containing {0, 1}
 - binary operations { + , }
 - and a unary operation { ' }
 - such that the following axioms hold:

	For any a, b, c in B:		
/	1. closure:	a + b is in B	a •
	2. commutativity:	a + b = b + a	a •
	3. associativity:	a + (b + c) = (a + b) + c	a •
	4. distributivity:	$a + (b \cdot c) = (a + b) \cdot (a + c)$	a •
	5. identity:	a + 0 = a	a •
	6. complementarity:	a + a' = 1	a • ;
	7. null:	a + 1 = 1	a •
	8. idempotency:	a + a = a	a •
\backslash	9. involution:	(a')' = a	

Even though it was overly tedious in the De Morgan case...

... the best strategy for proving other cases of set equality A = B is often:

Let \boldsymbol{x} be an arbitrary object.

Show $A \subseteq B$: Assume that $x \in A$ and show that $x \in B$ **Show** $B \subseteq A$: Assume that $x \in B$ and show that $x \in A$

Power Set Note & BEP(A) ~ BSA)

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days}) = \{\{\mathsf{M}, \mathsf{W}, \mathsf{F}\}, \{\mathsf{M}, \mathsf{W}\}, \{\mathsf{M}, \mathsf{F}\}, \{\mathsf{W}, \mathsf{F}\}, \{\mathsf{W}\}, \{\mathsf{W}\}, \{\mathsf{F}\}, \emptyset\}\}$

 $\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$

 $\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$

$$A \times B := \{x : \exists a \in A, \exists b \in B \ (x = (a, b))\}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

Cartesian Product

$$A \times B := \{x : \exists a \in A, \exists b \in B \ (x = (a, b))\}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

What is $A \times \emptyset? = \emptyset$ ho pairs

$$A \times B := \{x : \exists a \in A, \exists b \in B \ (x = (a, b))\}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

 $A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$

Russell's Paradox

$$S := \{x : x \notin x\}$$

Suppose that $S \in S$...

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."

need to pick a first

Representing Sets Using Bits

- Suppose that universe U is $\{1, 2, ..., n\}$
- Can represent set $B \subseteq U$ as a vector of bits: $b_1b_2 \dots b_n$ where $b_i = 1$ when $i \in B$ $b_i = 0$ when $i \notin B$

Called the characteristic vector of set B

• Given characteristic vectors for A and B

What is characteristic vector for $\underline{A \cup B}$? $\underline{A \cap B}$? $\underline{A \cap B}$ $\underline{A \cap B}$ $\underline{A \cap$

- If x and y are bits: $(x \oplus y) \oplus y = ? \times$
- What if x and y are bit-vectors?

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$ \frown \bigwedge
- Eve cannot figure out m from C unless she can guess K