CSE 311: Foundations of Computing

Lecture 13: Set Theory

3/10/81

“Eraser fight!!”



Last class: Some Common Sets

N is the set of Natural Numbers; N ={0, 1, 2, ...}

Z. is the set of Integers; Z =1...,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, m,\/2

S [n] is the set {1, 2, ..., n} when nis a natural number

/_Q = {} is the empty set; the only set with no elements



Last class: Definitions

A and B are equal if they have the same elements

A=B := Vx(xe A< xe B)

™

 Ais asubset of B if every element of Ais also in B
AcB = Vx(xe A— xe B)
* Notes: (4 =B) = (A< B) A(Bc A)

A2 Bmeans B C A

AQB’A%BmeanSAEBbutAiB



Definition: Subset

A is a subset of B if every element of A is also in B

AcB = Vx(xe A— xe B)

A={1,2,3}
B={34,5)
C = {3, 4}
QUESTIONS
@ cC A?
AcB? X

CcB? v




Definition: Subset

A is a subset of B if every element of A is also in B

AcB = Vx(xe A— xe B)

Another way to write domain restriction.

We will use a shorthand for restriction to a set

Vxe A, P(x) := ¥Vx(xe A— P(x))
T T o~ —

Restricting all quantified variables improves clarity




Sets & Logic



Building Sets from Predicates

Every set S defines a predicate “x € S”.

—

We can also define a set from a predicate P:

S = {x:P(x)}

S = the set of all x (in some universe U) for
which P(x) is true

In other words:.. x € S < P(x)




Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

Suppose we want to prove A € B.

This is a predicate:
ACB = Vx(xe A=xe B)

Typically: use direct proof of the implication



Proofs About Sets AE 8 = e h—e B

A = {x:P(x)} B := {x:Q(x)}
ld % b an e
Prove that A < B for P(x):= “x>2” and Q(x):="x*>3" &H"

xProof° ret x be an arbitrary object (in the univers/eD
Suppose that x_gﬁ.fo definition, this means P(x).

... Therefore x > 2 so x? > 4 which implies x% > 3.

Thus, we have Q(x). By definition, this means x € B.

Since x was arbitrary, we have shown, by definition,
that A € B. B



Operations on Sets



| 5
Set Operations Z
A £

AQB:={x:(xEA)l(x € B)} Union ;j

ANB:={x:(x €A)A(x €B)} Intersection

A\B:={x:(x€A)AN(x & B)} | Set Difference

e

A={1, 2, 3} QUESTIONS
B={3,5, 6} Using A, B, C and set operations, make...
c-3,4) 61=023,40¢] AvVEIC

Bi= 2nC =An=AncC
1,21= ANQ = A\C




More Set Operations A @

ADB:={x:(x€A D (x €B)} Symmetric
- Differ

= 12

A=A ={x:x€UNx¢gA} \QI\{

§ (with respect to universe U) Complement

Equivalentyx e A o x ¢ A © —(x € A)
A= {1; 2/ 3} \VJ
B={1,2,4,6} _
Universe: ALEB B=13,4, 6J

U=1{1,2,3,45,6) A= 14,561

PEA=ETAC]




Set Complement

Erik Brynjolfsson &
@erikbryn

It's remarkable that as recently as 11 years ago, the
sum of all human knowledge could be provided in just

two books.
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Notes from a
Street-Smart IKxecutive

WITH A NEW FOREWORD BY ARIEL EMANUEL
AND PATRICK WHITESELL




De Morgan’s Laws

AUB=ANB

ANB=AUB



De Morgan’s Laws

L _
Provethat AUB =ANBA

Formally, prove Y x, (x e AUB

& x € AN B)
f"

Proof: Let x be an arbitrary object.

(=) Suppose that x € A U B.

— = Proof technique:
Thus, we have x € A N B. To show C = D show

[/xe C - xe Dand
xe Do>xeC



De Morgan’s Laws

Provethat AUB=ANB
Formally, prove Vx (x EAUB < x € ANB)

Proof: Let x be an arbitrary object.

(=) Suppose that x € A U B. Then, by the definition of
complement, we have =(x € A U B).

Thus, we have x € ANB.



De Morgan’s Laws

Provethat AUB =ANB
Formally, proveVx (x€Ee AUB & x € ANBKB)

Proof: Let x be an arbitrary object.

(=) Suppose that x € A U B. Then, by the definition of
complement, we have —(x € A U B). The latter says,

by the definition of union, that =(x € AV x € B).

Thus, we have x € ANB.
-——-"“'—_\



De Morgan’s Laws

Provethat AUB =ANB
Formally, proveVx (x€Ee AUB & x € ANBKB)

Proof: Let x be an arbitrary object.

(=) Suppose that x € A U B. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that =(x € AV x € B).

Thus, x € Aand x € B.

N

Then x € A N B by the definition of intersection.
- -



De Morgan’s Laws

Provethat AUB=ANB
Formally, prove Vx (x EAUB < x € ANB)

Proof: Let x be an arbitrary object.

(=) Suppose that x € A U B. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that = (x € AV x € B).

_-7‘
7(xe-4)n'7(xf?}) L/_ZPM%

Thus, =(x_€ A) and =(x € B), so x € Aand x € B by

el e .
the definitiﬁn of complement, and thenx € A N B by
the definition of intersection.



De Morgan’s Laws

Provethat AUB =ANB
Formally, proveVx (x€Ee AUB & x € ANBKB)

Proof: Let x be an arbitrary object.

(=) Suppose that x € A U B. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that =(x € AV x € B), or
equivalently = (x € A) A —(x € B) by De Morgan’s law.

Thus, we have x € A and x € B by the definition of
complement, and then x € A N B by the definition of

Intersection. To show C = D show

xe C— xe Dand
xe D—-xeC




De Morgan’s Laws

Provethat AUB=ANB
Formally, prove Vx (x EAUB < x € ANB)

Proof: Let x be an arbitrary object.
(=) Suppose that x € AU B.... Then, x € AN B.

(<) Suppose that x € A N B.Then, by the definition of
intersection, we have x € A and x € B. That IS, we
have =(x € A) A =(x € B), which is equivalent to
—(x € AV x € B) by De Morgan’s law. The last is
equivalent to = (x € A U B), by the definition of union,
so we have shown x € A U B, by the definition of
complement. n




Proofs About Set Equality

A lot of repetitive work to show — and «.
Do we have a way to prove < directly?

Recall that P=Q and (P <> Q) =T are the same

T —

We can use an equivalence chain to prove that a
biconditional holds.



De Morgan’s Laws

Provethat AUB =ANB
Formally, prove Vx (x EAUB < x € ANB)

Proof: Let x be an arbitrary object.
The stated biconditional holds since:

x€EAUB =-=(x€AUB) Def of Comp
-(x €AV x € B) Def of Union

Chains of equivalences == —I(X € A) N —l(.X' € B) De Morgan

are often easier to read

ICRNEEAUENEE = X € Z NX € E Def of Comp

English text —_ 1\ eCjA—\
=x€ANB Def of U—rr%":)m

Since x was arbitrary, we have shown the sets are equal.




Distributive Laws

s

AN /LJ?j=(Aﬁ\l3)U(AﬂC)
AUBNC)=(AUB)Nn (4 UC)




It's Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic

“u_n

equivalence into “=” relationship between sets by
replacing U with V, N with A, and complement with —.

“Proof”: Let x be an arbitrary object.
The stated bi-condition holds since:
x € left side

replace set ops with propositional logic

apply Propositional Logic equivalence

replace propositional logic with set ops

X € right side
Since x was arbitrary, we have shown the sets are equal. &



It's Boolean Algebra Again!

* Usual notation used in circuit design

 Boolean algebra

— a set of elements B containing {0, 1}

— binary operations { +

o]

— and a unary operation { ' }
— such that the following axioms hold:

any a, b, cinB:
.Iclosure:

. commutativity:

. associativity:

. distributivity:

. identity:

hull:
. idempotency:
. involution:

O©O~NOUTRWNP

. complementarity:

a+bisinB
atb=b+a
at(b+c)=
at(bec)=
at0=a
ata =1
at+tl1l=1
ata=a
(@) =a

(@+b)+c
(@+b)e(@at+c)

DYDY

© OO RgGZOT

+isL3¢ v
eisn_ N\
Ois @ \3

1 is universe T
Ais A 7

isin B

=hbea
ec)=(@a°*b)ec
tc)=(a°*b)+(a-c)
=a

=0

=0

=a



Note on Proofs of Set Equality

Even though it was overly tedious in the De Morgan
case...

... the best strategy for proving other cases of set
equality A = B is often:

Let x be an arbitrary object.
Show A € B: Assume that x € A and show that x € B
Show B € A: Assume that x € B and show that x € 4



Power Set Nole 6 @ PR\e> &< A

 Power Set of a set A/ét of all subsets of A

P(A):={B:BCA)

\
~3
¢ e.g, let Days={M,W,Ft and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=" ¢ w3 swl, S M, MR BYR|
St \Nﬂ-‘% z g

P(2)=? %qé\ { fi ek (wdv
¢ NF - )6‘(/\3]




Power Set

 Power Set of a set A = set of all subsets of A

P(A):={B:B<S A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(D)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A):={B:B<S A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(Q)={D} #= O



Cartesian Product

AXB:={x:3a€A3b€EB (x=(ab))}

e N

}(41‘\7@" Qc’-A—p.NQ ke BT

R X R is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

7. X 7. is “the set of all pairs of integers”

If A={1,2),B={a,b,c}then A x B={(1,a), (1,b), (1,0),
- (2,a), (2,b), (2,¢)].



Cartesian Product

| Jq(le A"‘
/aw J= Jwﬂi-/ﬁ
A><B:={x:EIaEA/EIbE§Qx=(a,b))}
p— T ’)‘

R X R is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

WhatisAx(Z)?—;;Z{ Nno \Yaﬁfj



Cartesian Product

AXB:={x:3a€A,3be€B (x=(ab))}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

AXQP={(a,b):ac€cAANDbed}={(ab):a€A ANF} =0



Russell’s Paradox

Si={x:x¢&x}

Suppose that S € S...
—



Russell's Paradox  \x (}(C—S < Xéx)

={x:x €&x}
Suppose that § € S. Then, by the definition of S, S & S, but
that’s a contradiction.

Suppose that § e_f S. Then, by the definition of S, S € §, but
that's a contradiction too. —

This is reminiscent of the truth value of the statement “This

statement is false.” (’b
A , o
nec 7Ll MK‘\/()W Jc’*? 7}



Representing Sets Using Bits

* Suppose that universe U is {1,2, ..., n}

e CanrepresentsetB € U asm bits:
bib, ...b,, where b; =1wheni€B
b; =0wheni & B

— Called the characteristic vector of set B—

 @Given characteristic vectors for A and B

What is characteristic vector for AU B? AN B?
Anl 100000 0  \Rwin Ay VT T -

101 o ( —%—9
|l L\2O [
—(’}‘% f\’D\ \lo\ 1o ‘ﬂ'&'g'{ (H(\?( bﬂ7



Bitwise Operations

e 31,20,
U?&‘L@;m;’g ik

01101101

v 00110111
01111111

00101010
A 00001111
00001010

—011Q1101
® 00110111 |, .

Java:

Java:

Java:

* 01011010 ‘y5p

oo}

z=x|y

Z=X&Y

z=x"y



A Useful Identity

e If xandy are bits: (x@y)Py="7? X

 What if x and y are bit-vectors?



Private Key Cryptography

Alice wants to communicate message secretly to
Bob so that eavesdropper Eve who hears their
conversation cannot tell what Alice’'s message is.

Alice and Bob can get together and privately share
a secret key K ahead of time.

c:nu:rg,rpl | decrypt

plaintext

SENDER————#| key

1

i plaintext
message :

I

1

:
i key —PF’EE:EI'I.I'EFI:
| message .
: I

"|-._.-"

F;’ri':l-\
}‘f
o)
v

Fl.h-::e



One-Time Pad

* Alice and Bob privately share random n-bit vector_L(_
— Eve does not know K

* Later, Alice has n-bit message m to send to Bob

— Alice computes C=m @ K

T

— Alice sends g to Bob

— Bob computes m=C @ Kwhichis(mM®K) @K = VV\
e

 Eve cannot figure out m from C unless she can
guess K



