CSE 311: Foundations of Computing

Lecture 13: Set Theory
Last class: Some Common Sets

\(\mathbb{N} \) is the set of **Natural Numbers**; \(\mathbb{N} = \{0, 1, 2, \ldots\} \)

\(\mathbb{Z} \) is the set of **Integers**; \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \)

\(\mathbb{Q} \) is the set of **Rational Numbers**; e.g. \(\frac{1}{2}, -17, \frac{32}{48} \)

\(\mathbb{R} \) is the set of **Real Numbers**; e.g. \(1, -17, \frac{32}{48}, \pi, \sqrt{2} \)

\([n] \) is the set \(\{1, 2, \ldots, n\} \) when \(n \) is a natural number

\(\emptyset = \{\} \) is the **empty set**; the *only* set with no elements
Last class: Definitions

• A and B are equal if they have the same elements

\[A = B : = \forall x \ (x \in A \iff x \in B) \]

• A is a subset of B if every element of A is also in B

\[A \subseteq B : = \forall x \ (x \in A \implies x \in B) \]

• Notes:

\[(A = B) \equiv (A \subseteq B) \land (B \subseteq A) \]

A \supseteq B means B \subseteq A

A \subset B means A \subseteq B but A \neq B
Definition: Subset

A is a subset of B if every element of A is also in B

A \subseteq B := \forall x \ (x \in A \rightarrow x \in B)

A = \{1, 2, 3\}
B = \{3, 4, 5\}
C = \{3, 4\}

QUESTIONS

\emptyset \subseteq A? ✔
A \subseteq B? ✗
C \subseteq B? ✔

A \subseteq B?
Definition: Subset

A is a *subset* of B if every element of A is also in B

\[A \subseteq B \ := \ \forall x \ (x \in A \rightarrow x \in B) \]

Another way to write domain restriction.

We will use a shorthand for restriction to a set

\[\forall x \in A, \ P(x) \ := \ \forall x \ (x \in A \rightarrow P(x)) \]

Restricting all quantified variables improves *clarity*
Sets & Logic
Building Sets from Predicates

Every set S defines a predicate “$x \in S$”.

We can also define a set from a predicate P:

$$S := \{x : P(x)\}$$

$S =$ the set of all x (in some universe U) for which $P(x)$ is true

In other words... $x \in S \leftrightarrow P(x)$
Suppose we want to prove $A \subseteq B$.

This is a predicate:

\[A \subseteq B := \forall x (x \in A \implies x \in B) \]

Typically: use direct proof of the implication
Proofs About Sets

\[A \subseteq B := \forall x \ (x \in A \rightarrow x \in B) \]

A := \{x : P(x)\} \quad \quad \quad \quad \quad B := \{x : Q(x)\}

Prove that \(A \subseteq B \) for \(P(x) := "x>2" \) and \(Q(x) := "x^2>3" \)

Proof: Let \(x \) be an arbitrary object (in the universe).

Suppose that \(x \in A \). By definition, this means \(P(x) \).

\[\ldots \text{Therefore } x > 2 \text{ so } x^2 > 4 \text{ which implies } x^2 > 3. \]

Thus, we have \(Q(x) \). By definition, this means \(x \in B \).

Since \(x \) was arbitrary, we have shown, by definition, that \(A \subseteq B \).
Operations on Sets
Set Operations

Union
\[A \cup B := \{ x : (x \in A) \lor (x \in B) \} \]

Intersection
\[A \cap B := \{ x : (x \in A) \land (x \in B) \} \]

Set Difference
\[A \setminus B := \{ x : (x \in A) \land (x \notin B) \} \]

A = \{1, 2, 3\}
B = \{3, 5, 6\}
C = \{3, 4\}

QUESTIONS
Using A, B, C and set operations, make...

[6] = \{1, 2, 3, 4, 5, 6\} \quad A \cup B \cup C

{3} = B \cap C = A \cap B = A \cap C

{1, 2} = A \setminus B = A \setminus C
More Set Operations

\[A \oplus B := \{ x : (x \in A) \oplus (x \in B) \} \]

\[\overline{A} = A^C := \{ x : x \in U \land x \notin A \} \]

(with respect to universe U)

Equivalently \(x \in \overline{A} \leftrightarrow x \notin A \leftrightarrow \neg(x \in A) \)

A = \{1, 2, 3\}
B = \{1, 2, 4, 6\}
Universe:
\(U = \{1, 2, 3, 4, 5, 6\} \)

A \oplus B = \{3, 4, 6\}
\(\overline{A} = \{4, 5, 6\} \)

Symmetric Difference
Complement
It's remarkable that as recently as 11 years ago, the sum of all human knowledge could be provided in just two books.
De Morgan’s Laws

\[A \cup B = \overline{A} \cap \overline{B} \]

\[A \cap B = \overline{A} \cup \overline{B} \]
De Morgan’s Laws

Prove that $A \cup B = \overline{A} \cap \overline{B}$

Formally, prove $\forall x \ (x \in A \cup B \iff x \in \overline{A} \cap \overline{B})$

Proof: Let x be an arbitrary object.

(⇒) Suppose that $x \in A \cup B$.

...

Thus, we have $x \in \overline{A} \cap \overline{B}$.

Proof technique: To show $C = D$ show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$.
De Morgan’s Laws

Prove that \(\overline{A \cup B} = \overline{A} \cap \overline{B} \)

Formally, prove \(\forall x \ (x \in \overline{A \cup B} \iff x \in \overline{A} \cap \overline{B}) \)

Proof: Let \(x \) be an arbitrary object.

(\(\Rightarrow \)) Suppose that \(x \in \overline{A \cup B} \). Then, by the definition of complement, we have \(\overline{x \in A \cup B} \).

Thus, we have \(x \in \overline{A} \cap \overline{B} \).
De Morgan’s Laws

Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Formally, prove $\forall x \ (x \in \overline{A \cup B} \iff x \in \overline{A} \cap \overline{B})$

Proof: Let x be an arbitrary object.

(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

Thus, we have $x \in \overline{A} \cap \overline{B}$.
De Morgan’s Laws

Prove that \(\overline{A \cup B} = \overline{A} \cap \overline{B} \)

Formally, prove \(\forall x \ (x \in \overline{A \cup B} \iff x \in \overline{A} \cap \overline{B}) \)

Proof: Let \(x \) be an arbitrary object.

(\(\Rightarrow \)) Suppose that \(x \in \overline{A \cup B} \). Then, by the definition of complement, we have \(\neg(x \in A \cup B) \). The latter says, by the definition of union, that \(\neg(x \in A \lor x \in B) \).

...

Thus, \(x \in \overline{A} \) and \(x \in \overline{B} \).

Then \(x \in \overline{A} \cap \overline{B} \) by the definition of intersection.
De Morgan’s Laws

Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Formally, prove $\forall x \ (x \in \overline{A \cup B} \iff x \in \overline{A} \cap \overline{B})$

Proof: Let x be an arbitrary object.

(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

... $\neg(x \in A) \land \neg(x \in B)$ by De Morgan

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in \overline{A}$ and $x \in \overline{B}$ by the definition of complement, and then $x \in \overline{A} \cap \overline{B}$ by the definition of intersection.
De Morgan’s Laws

Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Formally, prove $\forall x \ (x \in \overline{A \cup B} \iff x \in \overline{A} \cap \overline{B})$

Proof: Let x be an arbitrary object.

(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$, or equivalently $\neg(x \in A) \land \neg(x \in B)$ by De Morgan’s law. Thus, we have $x \in \overline{A}$ and $x \in \overline{B}$ by the definition of complement, and then $x \in \overline{A} \cap \overline{B}$ by the definition of intersection.
De Morgan’s Laws

Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Formally, prove $\forall x \ (x \in \overline{A \cup B} \iff x \in \overline{A} \cap \overline{B})$

Proof: Let x be an arbitrary object.

(⇒) Suppose that $x \in \overline{A \cup B}$. Then, $x \in \overline{A} \cap \overline{B}$.

(⇐) Suppose that $x \in \overline{A} \cap \overline{B}$. Then, by the definition of intersection, we have $x \in \overline{A}$ and $x \in \overline{B}$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan’s law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in \overline{A \cup B}$, by the definition of complement.
Proofs About Set Equality

A lot of *repetitive* work to show \(\rightarrow \) and \(\leftarrow \).

Do we have a way to prove \(\leftrightarrow \) directly?

Recall that \(P \equiv Q \) and \((P \leftrightarrow Q) \equiv T \) are the same.

We can use an equivalence chain to prove that a biconditional holds.
De Morgan’s Laws

Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Formally, prove $\forall \; x \; (x \in A \cup B \leftrightarrow x \in \overline{A} \cap \overline{B})$

Proof: Let x be an arbitrary object.

The stated biconditional holds since:

\[
x \in \overline{A \cup B} \quad \equiv \quad \neg (x \in A \cup B) \quad \text{Def of Comp}
\]

\[
\equiv \quad \neg (x \in A \lor x \in B) \quad \text{Def of Union}
\]

\[
\equiv \quad \neg (x \in A) \land \neg (x \in B) \quad \text{De Morgan}
\]

\[
\equiv \quad x \in \overline{A} \land x \in \overline{B} \quad \text{Def of Comp}
\]

\[
\equiv \quad x \in \overline{A} \cap \overline{B} \quad \text{Def of Union}
\]

Since x was arbitrary, we have shown the sets are equal.
Distributive Laws

\[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \]
\[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]
It’s Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic equivalence into “≡” relationship between sets by replacing \cup with \lor, \cap with \land, and complement with \neg.

“**Proof**”: Let x be an arbitrary object.

The stated bi-condition holds since:

$x \in$ left side \equiv replace set ops with propositional logic
\equiv apply Propositional Logic equivalence
\equiv replace propositional logic with set ops
$\equiv x \in$ right side

Since x was arbitrary, we have shown the sets are equal. ■
It's Boolean Algebra Again!

- Usual notation used in circuit design

- Boolean algebra
 - a set of elements B containing $\{0, 1\}$
 - binary operations $\{+ , \cdot \}$
 - and a unary operation $\{\prime\}$
 - such that the following axioms hold:

For any a, b, c in B:

1. closure: $a + b$ is in B
 $a \cdot b$ is in B

2. commutativity: $a + b = b + a$
 $a \cdot b = b \cdot a$

3. associativity: $a + (b + c) = (a + b) + c$
 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

4. distributivity: $a + (b \cdot c) = (a + b) \cdot (a + c)$
 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

5. identity: $a + 0 = a$
 $a \cdot 1 = a$

6. complementarity: $a + a' = 1$
 $a \cdot a' = 0$

7. null: $a + 1 = 1$
 $a \cdot 0 = 0$

8. idempotency: $a + a = a$
 $a \cdot a = a$

9. involution: $(a')' = a$
 $(a')' = a$
Note on Proofs of Set Equality

Even though it was overly tedious in the De Morgan case...

... the best strategy for proving other cases of set equality $A = B$ is often:

Let x be an arbitrary object.

Show $A \subseteq B$: Assume that $x \in A$ and show that $x \in B$
Show $B \subseteq A$: Assume that $x \in B$ and show that $x \in A$
Power Set

- Power Set of a set \(A \) = set of all subsets of \(A \)

\[
P(A) := \{ B : B \subseteq A \}
\]

- e.g., let \(\text{Days} = \{M, W, F\} \) and consider all the possible sets of days in a week you could ask a question in class

\[\mathcal{P}(\text{Days}) = \{ \emptyset, \{M\}, \{W\}, \{F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M, W, F\} \} \]

\[\mathcal{P}(\emptyset) = \{ \emptyset \} \]

\[|A| = k \quad \text{element} \quad |\mathcal{P}(A)| = 2^k\]
Power Set

- Power Set of a set $A = \text{set of all subsets of } A$

\[
P(A) := \{ B : B \subseteq A \}
\]

- e.g., let $\text{Days} = \{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class

\[
P(\text{Days}) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}
\]

\[
P(\emptyset) = ?
\]
Power Set

- Power Set of a set $A = \text{set of all subsets of } A$

\[\mathcal{P}(A) := \{ B : B \subseteq A \} \]

- e.g., let $\text{Days} = \{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class

\[\mathcal{P}(\text{Days}) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\} \]

\[\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset \]
Cartesian Product

\[A \times B := \{ x : \exists a \in A, \exists b \in B \ (x = (a, b)) \} \]

\(\mathbb{R} \times \mathbb{R} \) is the real plane. You’ve seen ordered pairs before.

These are just for arbitrary sets.

\(\mathbb{Z} \times \mathbb{Z} \) is “the set of all pairs of integers”

If \(A = \{1, 2\} \), \(B = \{a, b, c\} \), then \(A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\} \).
Cartesian Product

\[A \times B := \{ x : \exists a \in A, \exists b \in B \ (x = (a, b)) \} \]

\(\mathbb{R} \times \mathbb{R} \) is the real plane. You’ve seen ordered pairs before.

These are just for arbitrary sets.

\(\mathbb{Z} \times \mathbb{Z} \) is “the set of all pairs of integers”

If \(A = \{1, 2\}, \ B = \{a, b, c\} \), then \(A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\} \).

What is \(A \times \emptyset \)?

\[\emptyset \text{ no pairs} \]
Cartesian Product

\[A \times B := \{ x : \exists a \in A, \exists b \in B \ (x = (a, b)) \} \]

\(\mathbb{R} \times \mathbb{R} \) is the real plane. You’ve seen ordered pairs before.

These are just for arbitrary sets.

\(\mathbb{Z} \times \mathbb{Z} \) is “the set of all pairs of integers”

If \(A = \{1, 2\}, B = \{a, b, c\} \), then \(A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\} \).

\[A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset \]
Russell’s Paradox

\[S := \{ x : x \notin x \} \]

Suppose that \(S \in S \)...
Russell’s Paradox

\[\forall x \left(x \in S \iff x \notin x \right) \]

\[S := \{ x : x \notin x \} \]

Suppose that \(S \in S \). Then, by the definition of \(S \), \(S \notin S \), but that’s a contradiction.

Suppose that \(S \notin S \). Then, by the definition of \(S \), \(S \in S \), but that’s a contradiction too.

This is reminiscent of the truth value of the statement “This statement is false.”
Representing Sets Using Bits

• Suppose that universe U is $\{1, 2, \ldots, n\}$
• Can represent set $B \subseteq U$ as a vector of bits:
 $b_1 b_2 \ldots b_n$ where $b_i = 1$ when $i \in B$
 $b_i = 0$ when $i \notin B$

 – Called the characteristic vector of set B

• Given characteristic vectors for A and B

 What is characteristic vector for $A \cup B$? $A \cap B$? \overline{A}? \overline{A}

A	1	0	1	0	1	0
B	1	0	1	0	1	0
$A \cup B$	1	0	1	1	1	1

 Bitwise OR

A	1	0	1	0	1	0
B	1	0	1	0	1	0
$A \cap B$	1	0	1	0	1	0

 Bitwise AND

A	1	0	1	0	1	0
B	1	0	1	0	1	0
\overline{A}	0	1	0	1	0	1

 Bitwise NOT
Bitwise Operations

Java: \(z = x | y \)

\[
\begin{array}{c}
01101101 \\
\lor \\
00110111 \\
\hline
01111111
\end{array}
\]

Java: \(z = x \& y \)

\[
\begin{array}{c}
00101010 \\
\land \\
00001111 \\
\hline
00001010
\end{array}
\]

Java: \(z = x \oplus y \)

\[
\begin{array}{c}
01101101 \\
\oplus \\
00110111 \\
\hline
00010110
\end{array}
\]
A Useful Identity

• If x and y are bits: \((x \oplus y) \oplus y = ?\)

• What if x and y are bit-vectors?
Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice’s message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.
One-Time Pad

• Alice and Bob privately share random n-bit vector K
 – Eve does not know K

• Later, Alice has n-bit message m to send to Bob
 – Alice computes $C = m \oplus K$
 – Alice sends C to Bob
 – Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$

• Eve cannot figure out m from C unless she can guess K