CSE 311: Foundations of Computing

Lecture 13: Set Theory

Last class: Some Common Sets

\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$
\mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. $1,-17,32 / 48, \pi, \sqrt{2}$
[n] is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathrm{n}\}$ when \mathbf{n} is a natural number
$\varnothing=\{ \}$ is the empty set; the only set with no elements

Last class: Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B}:=\forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Notes:

$$
(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)
$$

$A \supseteq B$ means $B \subseteq A$
$A \subset B$ means $A \subseteq B$ but $A \neq B$

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
$$

$$
D=\{5,3,4\}
$$

$$
B=D
$$

QUESTIONS

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Another way to write domain restriction.
We will use a shorthand for restriction to a set

$$
\forall x \in A, P(x): \Rightarrow x(x \in A \rightarrow P(x))
$$

Restricting all quantified variables improves clarity

Sets \& Logic

Building Sets from Predicates

Every set S defines a predicate " $x \in S$ ".

We can also define a set from a predicate P :

$$
S:=\{x: P(x)\} \mid\{x: x \text { is even }\}
$$

$S=$ the set of all x (in some universe U) for which $P(x)$ is true

In other words... $x \in S \leftrightarrow P(x)$

Proofs About Sets

$$
A:=\{x: P(x)\} \quad B:=\{x: Q(x)\}
$$

Suppose we want to prove A $\subseteq B$.

This is a predicate:

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Typically: use direct proof of the implication

Proofs About Sets

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
A:=\{x: P(x)\}
$$

$$
B:=\{x: Q(x)\}
$$

Prove that $A \subseteq B$ for $\mathrm{P}(x):=" x>2$ " and $\mathrm{Q}(x):=" x^{2}>3$ "
Proof: Let x be an arbitrary object (in the universe).
Suppose that $x \in A$. By definition, this means $P(x)$. \rightarrow. Therefore $x>2$ so $x^{2}>4$ which implies $x^{2}>3$. Thus, we have $Q(x)$. By definition, this means $x \in B$. Since x was arbitrary, we have shown, by definition, that $A \subseteq B$.

Operations on Sets

Set Operations

$A \cup B:=\{x:(x \in A) \vee(x \in B)\} \quad$ Union

$A \cap B:=\{x:(x \in A) \wedge(x \in B)\}$ Intersection

$A \backslash B:=\{x:(x \in A) \wedge(x \notin B)\}$ Set Difference

$A-B$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

QUESTIONS

Using A, B, C and set operations, make...
$[6]=\{1,2,34,5,6\}=A \cup B \cup C$

$$
\begin{aligned}
& \{3\}=A \cap B=A \cap C=B \cap C \\
& \{1,2\}=A \backslash(B \cap C)=A \backslash\{3\}=\{1,2\}
\end{aligned}
$$

$A \backslash B=A \backslash C$

More Set Operations

$A \oplus B:=\{x:(x \in A) \oplus(x \in B)\}$

 Symmetric Difference$\bar{A}=A^{C}:=\{x: x \in U \wedge x \notin A\}$ (with respect to universe U)

Complement

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
$$

Equivalently $x \in \bar{A} \leftrightarrow x \notin A \leftrightarrow \neg(x \in A)$

$$
\begin{aligned}
& A \oplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

Set Complement

Erik Brynjolfsson
@erikbryn
It's remarkable that as recently as 11 years ago, the sum of all human knowledge could be provided in just two books.

1:55 PM • Sep 10, 2021

MARK H. McCORMACK
What They DON'T Teach You at Harvard
Business School
Notes from a
Street-Smart Executive

De Morgan's Laws

$$
\begin{gathered}
\overline{A \cup B}=\bar{A} \cap \bar{B} \\
\neg(P \vee Q) \equiv \neg P \wedge \neg Q
\end{gathered}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object. \Leftrightarrow) Suppose that $x \in \overline{A \cup B}$.

Thus, we have $x \in \bar{A} \cap \bar{B}$.

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

Thus, we have $x \in \bar{A} \cap \bar{B}$.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, we have $x \in \bar{A} \cap \bar{B}$.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $x \in \bar{A}$ and $x \in \bar{B}$.
Then $x \in \bar{A} \cap \bar{B}$ by the definition of intersection.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in \bar{A}$ and $x \in \bar{B}$ by the definition of complement, and then $x \in \bar{A} \cap \bar{B}$ by the definition of intersection.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
(\Rightarrow) Suppose that $x \in \overline{A \cup B}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$, or equivalently $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law.
Thus, we have $x \in \bar{A}$ and $x \in \bar{B}$ by the definition of complement, and then $x \in \bar{A} \cap \bar{B}$ by the definition of intersection.

$$
\begin{aligned}
& \text { To show } \mathrm{C}=\mathrm{D} \text { show } \\
& x \in \mathrm{C} \rightarrow x \in \mathrm{D} \text { and } \\
& x \in \mathrm{D} \rightarrow x \in \mathrm{C}
\end{aligned}
$$

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
\Leftrightarrow) Suppose that $x \in \overline{A \cup B}$.... Then, $x \in \bar{A} \cap \bar{B}$.
(\Leftrightarrow) Suppose that $x \in \bar{A} \cap \bar{B}$. Then, by the definition of intersection, we have $x \in \bar{A}$ and $x \in \bar{B}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in \overline{A \cup B}$, by the definition of complement.

Proofs About Set Equality

A lot of repetitive work to show \rightarrow and \leftarrow.

Do we have a way to prove directly?

Recall that $P \equiv Q$ and $(P \leftrightarrow Q) \equiv T$ are the same

We can use an equivalence chain to prove that a biconditional holds.

De Morgan's Laws

Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Formally, prove $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B})$
Proof: Let x be an arbitrary object.
The stated biconditional holds since:

$$
\left.\begin{array}{rlr}
x \in \overline{A \cup B} & \equiv \neg(x \in A \cup B) & \\
& & \text { Def of Comp } \\
& \equiv \neg(x \in A \vee x \in B) & \\
\text { Def of Union } \\
\text { ns of equivalences } & \equiv \neg(x \in A) \wedge \neg(x \in B) & \\
\text { De Morgan } \\
\text { then reasier to read } \\
\text { tnglish text }
\end{array}\right)
$$

Since x was arbitrary, we have shown the sets are equal.

Distributive Laws

$\underline{A} \cap(\underline{B \cup C})=(A \cap B) \cup(A \cap C)$ $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

It's Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic equivalence into " $=$ " relationship between sets by replacing U with V, \cap with \wedge, and complement with \neg.
"Proof": Let x be an arbitrary object.
The stated bi-condition holds since:
$x \in$ left side $\quad \equiv$ replace set ops with propositional logic
三 apply Propositional Logic equivalence
\equiv replace propositional logic with set ops
$\equiv x \in$ right side
Since x was arbitrary, we have shown the sets are equal. \square

It's Boolean Algebra Again!

- Usual notation used in circuit design
- Boolean algebra
- a set of elements B containing $\{0,1\}$
- binary operations \{+, •\}
- and a unary operation \{'\}
- such that the following axioms hold:
+ is U
- is \cap

0 is \emptyset
1 is universe
A^{\prime} is \bar{A}

For any a, b, c in B :

1. closure:
2. commutativity:
3. associativity:
4. distributivity:
5. identity:
6. complementarity:
7. null:
8. idempotency:
9. involution:

$$
\begin{aligned}
& a+b \text { is in } B \\
& a+b=b+a \\
& a+(b+c)=(a+b)+c \\
& a+(b-c)=(a+b) \cdot(a+c) \\
& a+0=a \\
& a+a^{\prime}=1 \\
& a+1=1 \\
& a+a=a \\
& \left(a^{\prime}\right)^{\prime}=a
\end{aligned}
$$

```
\(a \cdot b\) is in \(B\)
\(a \cdot b=b \cdot a\)
\(a \cdot(b \cdot c)=(a \cdot b) \cdot c\)
\(a \cdot(b+c)=(a \cdot b)+(a \cdot c)\)
\(a \cdot 1=a\)
\(a \cdot a^{\prime}=0\)
a-0 \(=0\)
\(a \cdot a=a\)
```


Note on Proofs of Set Equality

Even though it was overly tedious in the De Morgan case...
... the best strategy for proving other cases of set equality $\boldsymbol{A}=\boldsymbol{B}$ is often:

Let x be an arbitrary object.
Show $A \subseteq B$: Assume that $x \in A$ and show that $x \in B$
Show $B \subseteq A$: Assume that $x \in B$ and show that $x \in A$

Power Set $\quad|A|:=$ the $\#$ of elements in A

- Power Set of a set $A=$ set of all subsets of A

$$
\begin{aligned}
& \mid \mathcal{P}(A):=\{B: B \subseteq A\} \\
& |P(A)|=2^{|A|}
\end{aligned}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class

$$
\begin{aligned}
& \mathcal{P} \text { (Days)=? }\left\{\phi,\{M, \omega, F\},\{M\},\{\omega\},\{E\},\{M, \omega\},\{\omega, F\},\left\{\begin{array}{l}
\{\omega, F\}\} \\
\mathcal{P}(\varnothing)=? \\
I P(\phi)=2^{0}=1
\end{array}\right.\right.
\end{aligned}
$$

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A):=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A):=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$

$$
\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing
$$

Cartesian Product

$$
A \times B:=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\text { If } \begin{aligned}
& A=\{1,2\}, B=\{a, b, c\}, \text { then } A \times B=\{(1, a),(1, b),(1, c) \\
&(2, a),(2, b),(2, c)\} .
\end{aligned}
$$

Cartesian Product

$$
A \times B:=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.
What is $A \times \emptyset$?

$$
\begin{aligned}
|A \times \phi| & =|A| \cdot|\phi| \\
& =|A| \cdot 0=0
\end{aligned}
$$

Cartesian Product

$$
A \times B:=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \varnothing=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathbf{F}\}=\varnothing$

Russell's Paradox
Frege $\forall z$
SES?

$$
\begin{aligned}
& \text { S\& } \mathcal{S}^{\prime \prime} \text { ? } \quad S:=\{x: x \notin x\} \\
& \text { Supose that } S \in S . . . \\
& \{1,2,3\} \in S
\end{aligned}
$$

Russell's Paradox

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."

Representing Sets Using Bits

- Suppose that universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B

What is characteristic vector for $A \cup B$? $A \cap B$?
\bar{A} ?

Bitwise Operations

01101101
 Java: $\quad z=x \mid y$

v 00110111
01111111
00101010 Java: $\quad \mathrm{z}=\mathrm{x} \& \mathrm{y}$
$\wedge 00001111$ 00001010
$01101101 \quad$ Java: $\quad z=x^{\wedge} y$
$\oplus 00110111$
01011010

A Useful Identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
- What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is. Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathbf{C = m} \oplus \mathbf{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

