Lecture 12: Modular Exponentiation, Set Theory

"I asked you a question, buddy. ... What's the square root of 5,248?"
Last class: Euclid’s Algorithm for GCD

Repeatedly use $\gcd(a, b) = \gcd(b, a \mod b)$ to reduce numbers until you get $\gcd(a, 0) = a$.

Equations with recursive calls:

\[
\begin{align*}
gcd(660, 126) &= gcd(126, 660 \mod 126) = gcd(126, 30) \\
&= gcd(30, 126 \mod 30) = gcd(30, 6) \\
&= gcd(6, 30 \mod 6) = gcd(6, 0) \\
&= 6
\end{align*}
\]

Tableau form (which is much easier to work with and will be more useful):

\[
\begin{align*}
660 &= 5 \times 126 + 30 \\
126 &= 4 \times 30 + \textbf{6} \\
30 &= 5 \times 6 + 0
\end{align*}
\]

Each line computes both quotient and remainder of the shifted numbers.
Last class: Extended Euclidean algorithm

- Can use Euclid’s Algorithm to find s, t such that
 \[\text{gcd}(a, b) = sa + tb \]

Example: $a = 35, b = 27$

Compute \(\text{gcd}(35, 27) \):

\[
\begin{align*}
35 &= 1 \times 27 + 8 \\
27 &= 3 \times 8 + 3 \\
8 &= 2 \times 3 + 2 \\
3 &= 1 \times 2 + 1 \\
2 &= 2 \times 1 + 0
\end{align*}
\]

\[
\begin{align*}
8 &= 35 - 1 \times 27 \\
3 &= 27 - 3 \times 8 \\
2 &= 8 - 2 \times 3 \\
1 &= 3 - 1 \times 2
\end{align*}
\]
Last class: Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find \(s, t \) such that

\[
gcd(a, b) = sa + tb
\]

Example: \(a = 35, b = 27 \)

Use equations to substitute back

\[
8 = 35 - 1 \times 27
\]
\[
3 = 27 - 3 \times 8
\]
\[
2 = 8 - 2 \times 3
\]
\[
1 = 3 - 1 \times 2
\]

1 = 3 – 1 * 2

= 3 – 1 * (8 – 2 * 3)

= 3 – 8 + 2 * 3

= (-1) * 8 + 3 * 3

= (-1) * 8 + 3 * (27 – 3 * 8)

= (-1) * 8 + 3 * 27 + (-9) * 8

= 3 * 27 + (-10) * 8

= 3 * 27 + (-10) * (35 – 1 * 27)

= 3 * 27 + (-10) * 35 + 10 * 27

= (-10) * 35 + 13 * 27

Optional Check:

\((-10) \times 35 = -350\)

\(13 \times 27 = 351\)
Let $0 \leq a, b < m$. Then, b is the \textit{multiplicative inverse of} a (modulo m) iff $ab \equiv 1 \pmod{m}$.
Let $0 \leq a, b < m$. Then, b is the **multiplicative inverse** of a (**modulo** m) iff $ab \equiv 1 \pmod{m}$.

This can’t exist if a and m have a common factor >1.

Idea: b is like $a^{-1} \pmod{m}$ so multiplying by b is equivalent to dividing by a.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

mod 10
Finding multiplicative inverse $\mod m$

Suppose that $\gcd(a, m) = 1$.

Using Extended Euclidean Algorithm find integers s and t such that $sa + tm = 1$.

Therefore $sa \equiv 1 \pmod{m}$.

The multiplicative inverse b of a modulo m must also satisfy $0 \leq b < m$ so we set $b = s \mod m$.

It works since $ba \equiv sa \equiv 1 \pmod{m}$
Example

Solve: \(7x \equiv 1 \pmod{26} \)
Example

Solve: \(7x \equiv 1 \pmod{26} \)

First compute and check that \(\gcd(26, 7) = 1 \)

\[
\begin{align*}
26 & = 3 \times 7 + 5 \\
7 & = 1 \times 5 + 2 \\
5 & = 2 \times 2 + 1 \\
2 & = 2 \times 1 + 0
\end{align*}
\]
Example

Solve: \(7x \equiv 1 \) (mod 26)

Then rewrite equations in form for substitution

\[
\begin{align*}
26 &= 3 \times 7 + 5 \\
7 &= 1 \times 5 + 2 \\
5 &= 2 \times 2 + 1 \\
2 &= 2 \times 1 + 0
\end{align*}
\]

\[
\begin{align*}
5 &= 26 - 3 \times 7 \\
2 &= 7 - 1 \times 5 \\
1 &= 5 - 2 \times 2
\end{align*}
\]
Example

Solve: $7x \equiv 1 \pmod{26}$

Apply substitutions from bottom to top.

\[
\begin{align*}
26 &= 3 \times 7 + 5 & 5 &= 26 - 3 \times 7 \\
7 &= 1 \times 5 + 2 & 2 &= 7 - 1 \times 5 \\
5 &= 2 \times 2 + 1 & 1 &= 5 - 2 \times 2 \\
2 &= 2 \times 1 + 0
\end{align*}
\]

\[
\begin{align*}
1 &= 5 - 2 \times 2 \\
 &= 5 - 2 \times (7 - 1 \times 5) \\
 &= (-2) \times 7 + 3 \times 5 \\
 &= (-2) \times 7 + 3 \times (26 - 3 \times 7) \\
 &= (-11) \times 7 + 3 \times 26
\end{align*}
\]
Example

Solve: $7x \equiv 1 \pmod{26}$

Read off coefficient and reduce modulo 26.

\[
26 = 3 \times 7 + 5 \\
7 = 1 \times 5 + 2 \\
5 = 2 \times 2 + 1 \\
2 = 2 \times 1 + 0
\]

\[
1 = 5 - 2 \times 2 \\
= 5 - 2 \times (7 - 1 \times 5) \\
= (-2) \times 7 + 3 \times 5 \\
= (-2) \times 7 + 3 \times (26 - 3 \times 7) \\
= (-11) \times 7 + 3 \times 26
\]

Now $(-11) \mod 26 = 15$. So, $x = 15 + 26k$ for integer k.

Multiplicative inverse of 7 modulo 26
Example of a more general equation

Now solve: \(7y \equiv 3 \pmod{26} \)

We already computed that 15 is the multiplicative inverse of 7 modulo 26. That is, \(7 \cdot 15 \equiv 1 \pmod{26} \)

If \(y \) is a solution, then multiplying by 15 we have
\[
15 \cdot 7 \cdot y \equiv 15 \cdot 3 \pmod{26}
\]

Substituting \(15 \cdot 7 \equiv 1 \pmod{26} \) on the left gives
\[
y = 1 \cdot y \equiv 15 \cdot 3 \equiv 19 \pmod{26}
\]

This shows that every solution \(y \) is congruent to 19.
Example of a more general equation

Now solve: \(7y \equiv 3 \pmod{26} \)

Multiplying both sides of \(y \equiv 19 \pmod{26} \) by 7 gives

\[
7y \equiv 7 \cdot 19 \equiv 3 \pmod{26}
\]

So, any \(y \equiv 19 \pmod{26} \) is a solution.

Thus, the set of numbers of the form \(y = 19 + 26k \), for any integer \(k \), are exactly solutions of this equation.
Math mod a prime is especially nice

\[\gcd(a, m) = 1 \text{ if } m \text{ is prime and } 0 < a < m \] so can always solve these equations mod a prime.

\[
\begin{array}{cccccccc}
+ & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 2 & 3 & 4 & 5 & 6 & 0 \\
2 & 2 & 3 & 4 & 5 & 6 & 0 & 1 \\
3 & 3 & 4 & 5 & 6 & 0 & 1 & 2 \\
4 & 4 & 5 & 6 & 0 & 1 & 2 & 3 \\
5 & 5 & 6 & 0 & 1 & 2 & 3 & 4 \\
6 & 6 & 0 & 1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\times & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
2 & 2 & 0 & 2 & 4 & 6 & 1 & 3 & 5 \\
3 & 3 & 0 & 3 & 6 & 2 & 5 & 1 & 4 \\
4 & 4 & 0 & 4 & 1 & 5 & 2 & 6 & 3 \\
5 & 5 & 0 & 5 & 3 & 1 & 6 & 4 & 2 \\
6 & 6 & 0 & 6 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]
Attack on RSA security with GCD

• RSA public key includes m that is the product of two large randomly chosen primes p, q
 – Everyone can see all the public keys (millions)
 – Security depends on keeping p and q secret
 – OK since factoring m seems very hard

• In 2012 a new attack using GCD broke a huge number of RSA public keys!
 – Weak keys: Algorithms/devices cut corners:
 Skimped on random bits or size of primes
Attack on RSA security with GCD

Weak keys: few random bits

- Few enough that some public keys m_1 and m_2 happen to share just one of their two factors:

$$m_1 = pq \text{ and } m_2 = pr$$

- Then can break both since $p = \gcd(m_1, m_2)$

2012: 11 million RSA keys, 23,500 broken
2016: 1024-bit RSA keys available from Internet
 - 26 million keys, 63,500 broken
2019: 750 million RSA keys, 250,000 broken
 - IoT (Internet of Things) devices often the culprit
RSA Relies on Modular Exponentiation

\[
\begin{array}{cccccc}
\text{x} & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 2 & 3 & 4 & 5 & 6 \\
2 & 2 & 4 & 6 & 1 & 3 & 5 \\
3 & 3 & 6 & 2 & 5 & 1 & 4 \\
4 & 4 & 1 & 5 & 2 & 6 & 3 \\
5 & 5 & 3 & 1 & 6 & 4 & 2 \\
6 & 6 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{a} & a^1 & a^2 & a^3 & a^4 & a^5 & a^6 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 4 & 1 & 2 & 4 & 1 \\
3 & 3 & 2 & 6 & 4 & 5 & 1 \\
4 & 4 & 2 & 1 & 4 & 2 & 1 \\
5 & 5 & 4 & 6 & 2 & 3 & 1 \\
6 & 6 & 1 & 6 & 1 & 6 & 1 \\
\end{array}
\]

\[\text{mod 7}\]
Modular Exponentiation: (Essential for RSA)

• Compute \(78365^{80429}\)

• Compute \(78365^{80429} \mod 104729\)

• Output is small
 - need to keep intermediate results small
Small Multiplications

By the multiplicative property modulo m, if you want to compute $ab \mod m$ then you can do the following:

1. Reduce a and b modulo m to get $a \mod m$ and $b \mod m$
2. Multiply to produce $c = (a \mod m)(b \mod m)$
3. Output $c \mod m$

Claim: $c \mod m = ab \mod m$

Proof: Just need to show that $c \equiv ab \pmod{m}$.

That follows from $(a \mod m) \equiv a \pmod{m}$

$(b \mod m) \equiv b \pmod{m}$

and the multiplicative property since c is the product of the left sides and ab is the product of the right sides. ■

$a = qm + r$
Repeated Squaring – small and fast

Then we have \(ab \mod m = ((a \mod m)(b \mod m)) \mod m \)

So \(a^2 \mod m = (a \mod m)^2 \mod m \)

and \(a^4 \mod m = (a^2 \mod m)^2 \mod m \)

and \(a^8 \mod m = (a^4 \mod m)^2 \mod m \)

and \(a^{16} \mod m = (a^8 \mod m)^2 \mod m \)

and \(a^{32} \mod m = (a^{16} \mod m)^2 \mod m \)

Can compute \(a^k \mod m \) for \(k = 2^i \) in only \(i \) steps

What if \(k \) is not a power of 2?
Fast Modular Exponentiation

Simple Example:
To compute $a^{10} \text{ mod } m$:
Compute $a^2 \text{ mod } m = (a \text{ mod } m)^2 \text{ mod } m$
$a^4 \text{ mod } m = (a^2 \text{ mod } m)^2 \text{ mod } m$
$a^8 \text{ mod } m = (a^4 \text{ mod } m)^2 \text{ mod } m$

Then $a^{10} \text{ mod } m = ((a^8 \text{ mod } m)(a^2 \text{ mod } m)) \text{ mod } m$

Also $a^{11} \text{ mod } m = ((a^{10} \text{ mod } m)(a \text{ mod } m)) \text{ mod } m$
Fast Exponentiation Algorithm

80429 in binary is 10011101000101101

80429 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{9} + 2^{5} + 2^{3} + 2^{2} + 2^{0}

a^{80429} = a^{2^{16}+2^{13}+2^{12}+2^{11}+2^{9}+2^{5}+2^{3}+2^{2}+2^{0}}

= a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{9}} \cdot a^{2^{5}} \cdot a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}}

a^{80429} \mod m = (a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{9}} \cdot a^{2^{5}} \cdot a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}}) \mod m

= (\ldots(((a^{2^{16}} \mod m \cdot a^{2^{13}} \mod m) \mod m \cdot a^{2^{12}} \mod m) \mod m \cdot a^{2^{11}} \mod m) \mod m \cdot a^{2^{9}} \mod m) \mod m \cdot a^{2^{5}} \mod m) \mod m \cdot a^{2^{3}} \mod m) \mod m \cdot a^{2^{2}} \mod m) \mod m \cdot a^{2^{0}} \mod m) \mod m

Uses only $16 + 8 = 24$ multiplications

The fast exponentiation algorithm computes $a^k \mod m$ using $\leq 2\log k$ multiplications $\mod m$
Fast Exponentiation: \(a^k \mod m \) for all \(k \)

Another way:

\[
\begin{align*}
\alpha^{2j} \mod m &= (\alpha^j \mod m)^2 \mod m \\
\alpha^{2j+1} \mod m &= ((\alpha \mod m) \cdot (\alpha^{2j} \mod m)) \mod m
\end{align*}
\]
Recursive Fast Exponentiation

```java
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) {
        long temp = FastModExp(a, k/2, modulus);
        return (temp * temp) % modulus;
    } else {
        long temp = FastModExp(a, k-1, modulus);
        return (a * temp) % modulus;
    }
}
```

\[
a^{2j} \mod m = (a^j \mod m)^2 \mod m
\]

\[
a^{2j+1} \mod m = ((a \mod m) \cdot (a^{2j} \mod m)) \mod m
\]
Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption
- RSA ...as of 2023
 - Vendor chooses random 1024-bit or 2048-bit primes p, q and 1024/2048-bit exponent e. Computes $m = p \cdot q$
 - Vendor broadcasts (m, e)
 - To send a to vendor, you compute $C = a^e \mod m$ using fast modular exponentiation and send C to the vendor.
 - Using secret p, q the vendor computes d that is the multiplicative inverse of $e \mod (p - 1)(q - 1)$.
 - Vendor computes $C^d \mod m$ using fast modular exponentiation.
 - Fact: $a = C^d \mod m$ for $0 < a < m$ unless $p|a$ or $q|a$
Sets
Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

Some simple examples
A = \{1\}
B = \{1, 3, 2\}
C = \{☐, 1\}
D = \{{17}, 17\}
E = \{1, 2, 7, \text{cat, dog, } \emptyset, \alpha\}
Some Common Sets

\(\mathbb{N} \) is the set of **Natural Numbers**; \(\mathbb{N} = \{0, 1, 2, \ldots\} \)

\(\mathbb{Z} \) is the set of **Integers**; \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \)

\(\mathbb{Q} \) is the set of **Rational Numbers**; e.g. \(\frac{1}{2}, -17, \frac{32}{48} \)

\(\mathbb{R} \) is the set of **Real Numbers**; e.g. \(1, -17, \frac{32}{48}, \pi, \sqrt{2} \)

\([n] \) is the set \(\{1, 2, \ldots, n\} \) when \(n \) is a natural number

\(\emptyset = \{\} \) is the **empty set**; the *only* set with no elements
Sets can be elements of other sets

For example
A = \{\{1\},\{2\},\{1,2\},\emptyset\}
B = \{1,2\}

Then B ∈ A.
Definitions

• A and B are **equal** if they have the same elements
 \[A = B := \forall x \ (x \in A \iff x \in B) \]

• A is a **subset** of B if every element of A is also in B
 \[A \subseteq B := \forall x \ (x \in A \rightarrow x \in B) \]

• Notes:
 \[(A = B) \equiv (A \subseteq B) \land (B \subseteq A)\]

 \[A \supseteq B \text{ means } B \subseteq A\]

 \[A \subset B \text{ means } A \subseteq B \text{ but } A \neq B\]
Definition: Equality

A and B are equal if they have the same elements

\[A = B := \forall x (x \in A \iff x \in B) \]

A = \{1, 2, 3\}
B = \{3, 4, 5\}
C = \{3, 4\}
D = \{4, 3, 3\}
E = \{3, 4, 3\}
F = \{4, \{3\}\}

Which sets are equal to each other?
Definition: Subset

A is a *subset* of B if every element of A is also in B

\[A \subseteq B : \forall x (x \in A \rightarrow x \in B) \]

QUESTIONS

- \(\emptyset \subseteq A? \)
- \(A \subseteq B? \)
- \(C \subseteq B? \)
Definition: Subset

A is a *subset* of B if every element of A is also in B

\[A \subseteq B := \forall x \ (x \in A \rightarrow x \in B) \]

Note the domain restriction.

We will use a shorthand restriction to a set

\[\forall x \in A, \ P(x) := \forall x \ (x \in A \rightarrow P(x)) \]

Restricting all quantified variables improves *clarity*
Sets & Logic
Building Sets from Predicates

Every set S defines a predicate “$x \in S$”.

We can also define a set from a predicate P:

$$S := \{x : P(x)\}$$

$S = \text{the set of all } x \text{ (in some universe } U) \text{ for which } P(x) \text{ is true}$

In other words... $x \in S \leftrightarrow P(x)$
Suppose we want to prove $A \subseteq B$.

This is a predicate:

$$A \subseteq B := \forall x \ (x \in A \rightarrow x \in B)$$

Typically: use direct proof of the implication.
Prove that $A \subseteq B$ for $P(x) := "x>2"$ and $Q(x) := "x^2>3"$

Proof: Let x be an arbitrary object (in the universe). Suppose that $x \in A$. By definition, this means $P(x)$.

... Therefore $x > 2$ so $x^2 > 4$ which implies $x^2 > 3$.

Thus, we have $Q(x)$. By definition, this means $x \in B$.

Since x was arbitrary, we have shown, by definition, that $A \subseteq B$.

Proofs About Sets

$A := \{x : P(x)\}$
$B := \{x : Q(x)\}$

$A \subseteq B := \forall x (x \in A \to x \in B)$