CSE 311: Foundations of Computing

Lecture 12: Modular Exponentiation, Set Theory

"I asked you a question, buddy. ... What's the square root of 5,248?"

Last class: Euclid's Algorithm for GCD

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(a, 0) = a. heek out

Equations with recursive calls:

 $gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$ $= \gcd(30, 126 \mod 30) = \gcd(30, 6)$ $= \gcd(6, 30 \mod 6) = \gcd(6, 0)$ = 6

Tableau form (which is much easier to work with and will be more useful):

$$660 = 5 * 126 + 30$$

$$126 = 4 * 30 + 6$$

$$30 = 5 * 6 + 0$$

Each line computes both quotient and remainder of the shifted numbers

Last class: Extended Euclidean algorithm

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Example: a = 35, b = 27

Compute gcd(35, 27):

$$35 = 1 * 27 + 8$$

$$27 = 3 * 8 + 3$$

$$8 = 2 * 3 + 2$$

$$3 = 1 * 2 + 1$$

$$2 = 2 * 1 + 0$$

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

Last class: Extended Euclidean algorithm

gcd(a, b)

• Can use Euclid's Algorithm to find *s*, *t* such that

Example: a = 35, b = 27

Use equations to substitute back

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

Optional Check: (-10) * 35 = -35013 * 27 = 351

= sa + tb
1 = 3 - 1 * 2
= 3 - 1 * (8 - 2 * 3)
= 3 - 8 + 2 * 3
= (-1) * 8 + 3 * 3
= (-1) * 8 + 3 * (27 - 3 * 8)
= (-1) * 8 + 3 * 27 + (-9) * 8
$=3 \times 27 + (-10) \times 8$
= 3 * 27 + (-10) * (35 - 1 * 27)
= 3 * 27 + (-10) * 35 + 10 * 27
= (-10) * 35 + 13 * 27

Last class: Multiplicative inverse (mod m)

Let $0 \le a, b < m$. Then, b is the multiplicative inverse of a (modulo m) iff $ab \equiv 1 \pmod{m}$.

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
n	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Х	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

mod 7

mod 10

Last class: Multiplicative inverse (mod m)

Let $0 \le a, b < m$. Then, b is the multiplicative inverse of a (modulo m) iff $ab \equiv 1 \pmod{m}$.

This can't exist if a and m have a common factor >1.

Idea: *b* is like $a^{-1} \pmod{m}$ so multiplying by *b* is equivalent to dividing by *a*.

х	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	-1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	Q	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

mod 10

Example

Solve:
$$7x \equiv 1 \pmod{26}$$

First compute and check that gcd(26,7) = 1

$$26 = 3 * 7 + 5$$

7 = 1 * 5 + 2
5 = 2 * 2 + 1
2 = 2 * 1 + 0

Then rewrite equations in form for substitution

$$26 = 3 * 7 + 5 \qquad 5 = 26 - 3 * 7$$

$$7 = 1 * 5 + 2 \qquad 2 = 7 - 1 * 5$$

$$5 = 2 * 2 + 1 \qquad 1 = 5 - 2 * 2$$

$$2 = 2 * 1 + 0$$

Apply substitutions from bottom to top.

26 = 3 * 7 + 5	5 = 26 - 3 * 7
7 = 1 * 5 + 2	2 = 7 - 1 * 5
5 = 2 * 2 + 1	1 = 5 - 2 * 2
2 = 2 * 1 + 0	

$$1 = 5 - 2 * 2$$

= 5 - 2 * (7 - 1 * 5)
= (-2) * 7 + 3 * 5
= (-2) * 7 + 3 * (26 - 3 * 7)
= (-11) * 7 + 3 * 26

Read off coefficient and reduce modulo 26.

26 = 3 * 7 + 5	5 = 26 - 3 * 7
7 = 1 * 5 + 2	2 = 7 - 1 * 5
5 = 2 * 2 + 1	1 = 5 - 2 * 2
2 = 2 * 1 + 0	
1 = 5 - 2 * 2 = 5 - 2 * (7 - 1 * 5) = (-2) * 7 + 3 * 5 = (-2) * 7 + 3 * (26 - 3 * 2)	* 7)
= (-11) * 7 + 3 * 26	Multiplicative inverse of 7 modulo 26
Now $(-11) \mod 26 = 15$. So	x = 15 + 26k for integer k.

This shows that every solution y is congruent to 19.

Now solve: $7y \equiv 3 \pmod{26}$

Multiplying both sides of $y \equiv 19 \pmod{26}$ by 7 gives $7y \equiv 7 \cdot 19 \equiv 3 \pmod{26}$ So, any $y \equiv 19 \pmod{26}$ is a solution.

 $\frac{div}{l} = 17 (1100 20) is a solution.$

Thus, the set of numbers of the form y = 19 + 26k, for any integer k, are <u>exactly</u> solutions of this equation.

gcd(a, m) = 1 if *m* is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

mod 7

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$...

...into a small set of locations $\{0,1, \dots, n-1\}$ so one can quickly check if some value is present

- $hash(x) = (ax + b) \mod p$ for p a prime close to n- Relies on gcd(a, p) = 1 to avoid many collisions
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

- $hash(x) = (ax + b) \mod p$ for p a prime close to n
- Applications
 - map integer to location in array (hash tables)
 - map user ID or IP address to machine
 - requests from the same user / IP address go to the same machine requests from different users / IP addresses spread randomly

- RSA *public key* includes <u>m</u> that is the product of two large *randomly chosen* primes <u>p</u>, <u>q</u>
 - Everyone can see all the public keys (millions)
 - Security depends on keeping p and q secret
 - OK since factoring *m* seems very hard
- In 2012 a new attack using GCD broke a huge number of RSA public keys!
 - Weak keys: Algorithms/devices cut corners:
 Skimped on random bits or size of primes

Weak keys: few random bits

– Few enough that some public keys m_1 and m_2 happen to share just one of their two factors:

 $m_1 = pq$ and $m_2 = pr$

- Then can break both since $p = \text{gcd}(m_1, m_2)$

2012: 11 million RSA keys, 23,500 broken

2016: 1024-bit RSA keys available from Internet

- 26 million keys, 63,500 broken

2019: 750 million RSA keys, 250,000 broken

IoT (Internet of Things) devices often the culprit

RSA Relies on Modular Exponentiation

mod 7

a⁶

Modular Exponentiation: (Essential for RSA)

- Compute 78365⁸¹⁴⁵³ How many digits := 5x81453 digits
- Compute 78365⁸¹⁴⁵³ mod 104729

• Output is small

need to keep intermediate results small

Small Multiplications

By the multiplicative property modulo m, if you want to compute $ab \mod m$ then you can do the following:

- 1. Reduce a and b modulo m to get $a \mod m$ and $b \mod m$
- 2. Multiply to produce $c = (a \mod m)(b \mod m)$
- -3. Output $c \mod m$

Claim: $c \mod m = ab \mod m$

Proof: Just need to show that $c \equiv ab \pmod{m}$.

That follows from $(a \mod m) \equiv a \pmod{m}$ $(b \mod m) \equiv b \pmod{m}$

and the multiplicative property since *c* is the product of the left sides and *ab* is the product of the right sides.

Then we have $ab \mod m = ((a \mod m)(b \mod m)) \mod m$ So $a^2 \mod m = (a \mod m)^2 \mod m$ and $a^4 \mod m = (a^2 \mod m)^2 \mod m$ and $a^8 \mod m = (a^4 \mod m)^2 \mod m$ and $a^{16} \mod m = (a^8 \mod m)^2 \mod m$ and $a^{32} \mod m = (a^{16} \mod m)^2 \mod m$ Can compute $a^k \mod m$ for $k = 2^i$ in only *i* steps

What if *k* is not a power of 2?

Fast Exponentiation Algorithm

Fast Exponentiation: $a^k \mod m$ for all k

Another way....

 $a^{2j} \mod m = \left(a^{j} \mod m\right)^{2} \mod m$ $a^{2j+1} \mod m = \left(\left(a \mod m\right) \cdot \left(a^{2j} \mod m\right)\right) \mod m$

Recursive Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

}

$$a^{2j} \mod m = (a^j \mod m)^2 \mod m$$

 $a^{2j+1} \mod m = ((a \mod m) \cdot (a^{2j} \mod m)) \mod m$

Using Fast Modular Exponentiation

- Your e-commerce web transactions use <u>SSL (Secure</u> Socket Layer) based on RSA encryption
- RSA ...as of 2023
 - Vendor chooses random 1024-bit or 2048-bit primes p, qand 1024/2048-bit exponent e. Computes $m = p \cdot q$
 - Vendor broadcasts (*m*, *e*)
 - To send *a* to vendor, you compute $C = a^e \mod m$ using fast modular exponentiation and send *C* to the vendor.
 - Using secret p, q the vendor computes d that is the multiplicative inverse of $e \mod (p-1)(q-1)$.
 - Vendor computes $C^d \mod m$ using fast modular exponentiation.
 - Fact: $a = C^d \mod m$ for 0 < a < m unless p|a or q|a

Sets

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

Some simple examples $A = \{1\}$ $B = \{1, 3, 2\}$ C = { [], 1 } ← D = {{17}, 17} ← $E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}$

Sets can be elements of other sets

For example

$$A = \{\{1\}, \{2\}, \{1,2\}, \emptyset\}$$

 $B = \{1,2\}$
Then $B \in A$.

Definitions

• A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

• Notes: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$ $A \supseteq B \text{ means } B \subseteq A$ $A \subset B \text{ means } A \subseteq B \text{ but } A \neq B$ A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$C = \{3, 4\}$$

$$D = \{4, 3, 3\}$$

$$E = \{3, 4, 3\}$$

$$F = \{4, \{3\}\}$$

Which sets are equal to each other?

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$C = \{3, 4\}$$

$$QUESTIONS$$

$$QUESTIONS$$

$$QUESTIONS$$

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

Note the domain restriction.

We will use a shorthand restriction to a set

$$\forall x \in A, P(x) := \forall x (x \in A \rightarrow P(x))$$

Restricting all quantified variables improves *clarity*