CSE 311: Foundations of Computing

Lecture 12: Modular Exponentiation, Set Theory

"I asked you a question, buddy. ... What's the square root of 5,248 ?"

Last class: Euclid's Algorithm for GCD

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(a, 0)=a$.

Equations with recursive calls:
video
$\operatorname{gcd}(660,126)=\operatorname{gcd}(126,660 \bmod 126)=\operatorname{gcd}(126,30)$
$=\operatorname{gcd}(30,126 \bmod 30)=\operatorname{gcd}(30,6)$
$=\operatorname{gcd}(6,30 \bmod 6) \quad=\operatorname{gcd}(6,0)$
= 6

Tableau form (which is much easier to work with and will be more useful):

$$
\begin{array}{rr}
660=5 * 126+30 \\
126=4 * & 30+6 \\
30=5 * & 6+0
\end{array} \quad \begin{aligned}
& \text { Each line computes both } \\
& \text { quotient and remainder of the } \\
& \text { shifted numbers }
\end{aligned}
$$

Last class: Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Example: $a=35, b=27$
Compute $\operatorname{gcd}(35,27)$:

$$
\begin{aligned}
35 & =1 * 27+8 \\
27 & =3 * 8+3 \\
8 & =2 * 3+2 \\
3 & =1 * 2+1 \\
2 & =2 * 1+0
\end{aligned}
$$

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 3=27-3 * 8 \\
& 2=8-2 * 3 \\
& (1)=3-1 * 2
\end{aligned}
$$

Last class: Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Example: $a=35, b=27$
Use equations to substitute back

$$
\begin{aligned}
1 & =\left(\begin{array}{l}
3-1 * 2 \\
3-1 *(8-2 * 3) \\
3-8+2 * 3 \\
\\
\\
\end{array}=(-1) * 8+3 * 3\right. \\
& =(-1) * 8+3 *(27-3 * 8) \\
& =(-1) * 8+3) * 27+(-9) * 8 \\
& =3 * 27+(-10) * 8 \\
& =3 * 27+(-10) *(35-1 * 27) \\
& =3 * 27+(-10) * 35+10 * 27 \\
& =(-10) * 35+13 * 27
\end{aligned}
$$

Optional Check:

$$
\begin{array}{r}
(-10) * 35=-350 \\
13 * 27=351
\end{array}
$$

$$
\begin{aligned}
& 8 \equiv 35-1^{*} 27 \\
& 3 \equiv 27-3^{*} 8 \\
& 2=8-2^{*} 3 \\
& 1=3-1^{*}(2)
\end{aligned}
$$

Last class: Multiplicative inverse $(\bmod m)$

Let $0 \leq a, b<m$. Then, b is the multiplicative inverse of $a(\operatorname{modulo} m)$ iff $a b \equiv 1(\bmod m)$.

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 7$

x	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

$\bmod 10$

Last class: Multiplicative inverse $(\bmod m)$

Let $0 \leq a, b<m$. Then, b is the multiplicative inverse of $a(\operatorname{modulo} m)$ iff $a b \equiv 1(\bmod m)$.

This can't exist if a and m have a common factor >1.

Idea: b is like $a^{-1}(\bmod m)$ so multiplying by b is equivalent to dividing by a.

x	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

$\bmod 10$

Finding multiplicative inverse $\bmod m$

Suppose that $\operatorname{gcd}(a, m)=1$.
Using Extended Euclidean Algorithm
find integers s and t such that $s a+t m=1$.
Therefore $s a \equiv 1(\bmod m)$.
The multiplicative inverse \underline{b} of a modulo m must also
satisfy $0 \leq b<m$ so we set $b=s \bmod m$.
It works since $b a \equiv s a \equiv 1(\bmod m)$

Example

Solve: $7 x \equiv 1(\bmod 26)$

Example

Solve: $7 x \equiv 1(\bmod 26)$

First compute and check that $\operatorname{gcd}(26,7)=1$

$$
\begin{aligned}
& 26=3 * 7+5 \\
& 7=1 * 5+2 \\
& 5=2 * 2+\frac{1}{0} \\
& 2=2 * 1+\frac{1}{0}
\end{aligned}
$$

Example

Solve: $7 x \equiv 1(\bmod 26)$

Then rewrite equations in form for substitution

$$
\begin{array}{ll}
26=3 * 7+5 & \frac{5=26-3 * 7}{7}=1 * 5+2 \\
5=2 * 2+1 * 5 \\
2=2 * 1+0 & 1=5-2 * 2 \\
2=2+1 &
\end{array}
$$

Example

Solve: $7 x \equiv 1(\bmod 26)$

Apply substitutions from bottom to top.

$$
\begin{array}{ll}
26=3 * 7+5 & 5=26-3 * 7 \\
7=1 * 5+2 & 2=7-1 * 5 \\
5=2 * 2+1 & 1=5-2 * 2 \\
2=2 * 1+0 &
\end{array}
$$

$$
\begin{aligned}
1 & =5-2 * 2 \\
& =5-2 *(7-1 * 5) \\
& =(-2) * 7+3 * 5 \\
& =(-2) * 7+3 *(26-3 * 7) \\
& =(-11) * 7+3 * 26
\end{aligned}
$$

Example

Solve: $7 x \equiv 1(\bmod 26)$

Read off coefficient and reduce modulo 26.

$$
\begin{aligned}
& \begin{array}{lll}
26=3 * 7+5 & 5=26-3 * 7 \\
7 & =1 * 5+2 & 2=7-1 * 5 \\
5 & =2 * 2+1 & 1=5-2 * 2 \\
2=2 * 1+0 &
\end{array} \\
& 1=5-2 * 2 \\
& =5-2 *(7-1 * 5) \\
& =(-2) * 7 \quad+3 * 5 \\
& =(-2) * 7+3 *(26-3 * 7) \\
& =(-11) * 7+3 * 26 \quad \text { Multiplicative inverse of } 7 \text { modulo } 26 \\
& \text { Now (-11) mod } 26=15 \text {. So, } x=15+26 k \text { for integer } k \text {. }
\end{aligned}
$$

Example of a more general equation

Now solve: $7 y \equiv 3(\bmod 26)$

We already computed that 15 is the multiplicative inverse of 7 modulo 26 . That is, $7 \cdot 15 \equiv 1(\bmod 26)$

If y is a solution, then multiplying by 15 we have

$$
15 \cdot 7 \cdot y \equiv 153(\bmod 26)
$$

Substituting $\underset{\sim}{15 \cdot 7} \equiv 1(\bmod 26)$ on the left gives

$$
y=1 \cdot y \equiv \underbrace{15 \cdot 3} \equiv 19(\bmod 26)
$$

This shows that every solution y is congruent to 19 .

Example of a more general equation

Now solve:7y $\equiv 3(\bmod 26)$

Multiplying both sides of $y \equiv 19(\bmod 26)$ by 7 gives

$$
7 y \equiv \underline{7 \cdot 19} \equiv 3(\bmod 26)
$$

So, any $y \equiv 19(\bmod 26)$ is a solution.
Thus, the set of numbers of the form $y=19+26 k$, for any integer k, are exactly solutions of this equation.

Math mod a prime is especially nice

$$
\operatorname{gcd}(a, m)=1 \text { if } m \text { is prime and } 0<a<m \text { so }
$$ can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

T
$\bmod 7$

Hashing

Scenario:
Map a small number of data values from a large domain $\{0,1, \ldots, M-1\} \ldots$
...into a small set of locations $\{0,1, \ldots, n-1\}$ so one can quickly check if some value is present

- hash $(x)=(a x+b) \bmod p$ for p a prime close to n - Relies on $\operatorname{gcd}(a, p)=1$ to avoid many collisions
- Depends on all of the bits of the data
- helps avoid collisions due to similar values
- need to manage them if they occur

Hashing

- hash $(x)=(a x+b) \bmod p$ for p a prime close to n
- Applications
- map integer to location in array (hash tables)
- map user ID or IP address to machine
requests from the same user / IP address go to the same machine requests from different users / IP addresses spread randomly

Attack on RSA security with GCD

- RSA public key includes \underline{m} that is the product of two large randomly chosen primes p, \underline{q}
- Everyone can see all the public keys (millions)
- Security depends on keeping p and q secret
- OK since factoring m seems very hard
- In 2012 a new attack using GCD broke a huge number of RSA public keys!
- Weak keys: Algorithms/devices cut corners:

Skimped on random bits or size of primes

Attack on RSA security with GCD

Weak keys: few random bits

- Few enough that some public keys m_{1} and m_{2} happen to share just one of their two factors:

$$
m_{1}=p q \text { and } m_{2}=p r
$$

- Then can break both since $p=\operatorname{gcd}\left(\boldsymbol{m}_{1}, \boldsymbol{m}_{2}\right)$

2012: 11 million RSA keys, 23,500 broken
2016: 1024-bit RSA keys available from Internet

- 26 million keys, 63,500 broken

2019: 750 million RSA keys, 250,000 broken

- IoT (Internet of Things) devices often the culprit

RSA Relies on Modular Exponentiation

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

a	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

$\bmod 7$

Modular Exponentiation: (Essential for RSA)

- Compute 78365^{81453}

$$
\text { thow many digits? }=5 \times 81453 \text { dugib }
$$

- Compute 7836581453 mod 104729
- Output is small
- need to keep intermediate results small

Small Multiplications

By the multiplicative property modulo m, if you want to compute $\boldsymbol{a b} \bmod \boldsymbol{m}$ then you can do the following:

1. Reduce \boldsymbol{a} and \boldsymbol{b} modulo \boldsymbol{m} to get $\boldsymbol{a} \bmod \boldsymbol{m}$ and $\boldsymbol{b} \bmod \boldsymbol{m}$
2. Multiply to produce $\boldsymbol{c}=(\boldsymbol{a} \bmod \boldsymbol{m})(\boldsymbol{b} \bmod \boldsymbol{m})$
3. Output $\boldsymbol{c} \bmod \boldsymbol{m}$

Claim: $\boldsymbol{c} \bmod \boldsymbol{m}=\boldsymbol{a} \boldsymbol{b} \bmod \boldsymbol{m}$ Proof: Just need to show that $\boldsymbol{c} \equiv \boldsymbol{a} \boldsymbol{b}(\bmod \boldsymbol{m})$.

That follows frons $(\boldsymbol{a} \bmod \boldsymbol{m}) \equiv \boldsymbol{a}(\bmod \boldsymbol{m})$ A
$(\boldsymbol{b} \bmod \boldsymbol{m}) \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$
and the multiplicative property since \boldsymbol{c} is the product of the left sides and $\boldsymbol{a} \boldsymbol{b}$ is the product of the right sides.

Repeated Squaring - small and fast

Then we have $\boldsymbol{a} \boldsymbol{b} \bmod \boldsymbol{m}=((\boldsymbol{a} \bmod \boldsymbol{m})(\boldsymbol{b} \bmod \boldsymbol{m})) \bmod \boldsymbol{m}$
So $\quad a^{2} \bmod \boldsymbol{m}=(\boldsymbol{a} \bmod \boldsymbol{m})^{2} \bmod \boldsymbol{m}$
and $\quad \boldsymbol{a}^{4} \bmod \boldsymbol{m}=\left(\boldsymbol{a}^{2} \bmod \boldsymbol{m}\right)^{2} \bmod \boldsymbol{m}$
and
and
$a^{8} \bmod m=\left(a^{4} \bmod m\right)^{2} \bmod m$
and $\quad \boldsymbol{a}^{32} \bmod \boldsymbol{m}=\left(\boldsymbol{a}^{16} \bmod \boldsymbol{m}\right)^{2} \bmod \boldsymbol{m}$
2
3
$\boldsymbol{a}^{16} \bmod \boldsymbol{m}=\left(\boldsymbol{a}^{8} \bmod \boldsymbol{m}\right)^{2} \bmod \boldsymbol{m}$

2
Can compute $a^{k} \bmod m$ for $k=\underset{\sim}{2}$ in only i steps
What if k is not a power of 2 ?

Fast Exponentiation Algorithm

81453 in binary is 10011101000101101
$81453=2^{16}+2^{13}+2^{12}+2^{11}+2^{9}+2^{5}+2^{3}+2^{2}+2^{0}$
$a^{81453}=a^{2^{16}+2^{13}+2^{12}+2^{11}+2^{9}+2^{5}+2^{3}+2^{2}+2^{0}}$
$=\mathrm{a}^{2^{16}} \cdot \mathrm{a}^{2^{13}} \cdot \mathrm{a}^{2^{12}} \cdot \mathrm{a}^{2^{11}} \cdot \mathrm{a}^{2^{9}} \cdot \mathrm{a}^{2^{5}} \cdot \mathrm{a}^{2^{3}} \cdot \mathrm{a}^{2^{2}} \cdot \mathrm{a}^{2^{0}}$
$a^{81453} \bmod m=\left(a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{9}} \cdot a^{2^{5}} \cdot a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}}\right) \bmod m$
$=(\ldots)\left(\left(\left(\mathrm{a}^{26}\right) \mathrm{mod} \mathrm{m}\right.\right.$.
$\left.>a^{2^{13}} \operatorname{modm}\right) \operatorname{modm}$.
$\left.a^{2^{12}} \bmod m\right) \bmod m$.

Uses only $16+8=24$ multiplications $\left.a^{2^{11}} \bmod m\right) \bmod m$. $\left.a^{2}{ }^{9} \bmod m\right) \bmod m$. $\left.a^{2^{5}} \bmod m\right) \bmod m$. $\left.a^{2^{3}} \bmod m\right) \bmod m$. $\left.a^{2^{2}} \bmod m\right) \bmod m$. $\left.a^{2^{0}} \bmod m\right) \bmod m$
The fast exponentiation algorithm computes

$a^{k} \bmod m$ using $\leq 2 \log k$ multiplications $\bmod m$

Fast Exponentiation: $\boldsymbol{a}^{\boldsymbol{k}} \bmod \boldsymbol{m}$ for all \boldsymbol{k}
Another way....

$$
\begin{aligned}
& \boldsymbol{a}^{2 j} \bmod \boldsymbol{m}=\left(\underline{\boldsymbol{a}^{j} \bmod \boldsymbol{m}}\right)^{2} \bmod \boldsymbol{m} \\
& \boldsymbol{a}^{2 \boldsymbol{j}+1} \bmod m=\left((\boldsymbol{a} \bmod \boldsymbol{m}) \cdot\left(\boldsymbol{a}^{2 j} \bmod \boldsymbol{m}\right)\right) \bmod \boldsymbol{m}
\end{aligned}
$$

Recursive Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) { (b J
    long temp = FastModExp(a,k/2,modulus);
    return (temp * temp) % modulus;
    } else {
    long temp = FastModExp(a,k-1,modulus);
    return (a * temp) % modulus;
    }
}
\[
\begin{aligned}
& \boldsymbol{a}^{2 \boldsymbol{j}} \bmod \boldsymbol{m}=\left(\boldsymbol{a}^{j} \bmod \boldsymbol{m}\right)^{2} \bmod \boldsymbol{m} \\
& \boldsymbol{a}^{2 j+1} \bmod \boldsymbol{m}=\left((\boldsymbol{a} \bmod \boldsymbol{m}) \cdot\left(\boldsymbol{a}^{2 \boldsymbol{j}} \bmod \boldsymbol{m}\right)\right) \bmod \boldsymbol{m}
\end{aligned}
\]
```


Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption
- RSA ...as of 2023
- Vendor chooses random 1024-bit or 2048-bit primes p, q and 1024/2048-bit exponent e. Computes $m=p \cdot q$
- Vendor broadcasts (m, e)
- To send a to vendor, you compute $C=a^{e} \bmod m$ using fast modular exponentiation and send C to the vendor.
- Using secret p, q the vendor computes d that is the multiplicative inverse of $e \bmod (p-1)(q-1)$.
- Vendor computes $C^{d} \bmod m$ using fast modular exponentiation.
- Fact: $a=C^{d} \bmod m$ for $0<a<m$ unless $p \mid a$ or $q \mid a$

Sets

Sets

Sets are collections of objects called elements.
Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \longleftarrow \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$ \mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ \mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. $1,-17,32 / 48, \pi, \sqrt{2}$ $[\mathbf{n}]$ is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$ when \mathbf{n} is a natural number $\quad n>0$ $\varnothing=\{ \}$ is the empty set; the only set with no elements

Sets can be elements of other sets

$$
\begin{aligned}
& \text { For example } \\
& A=\{\{1\},\{2\},\{1,2\}, \varnothing\} \\
& B=\{1,2\}
\end{aligned} \text { Then } B \in A . ~ \$
$$

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B}:=\underbrace{\forall x}_{r}(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Notes:
$(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)$
$A \supseteq B$ means $B \subseteq A$
yoperjuhet
$A \subset B$ means $A \subseteq B$ but $A \neq B$

Definition: Equality

A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B}:=\forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\} \\
& D=\{4,3,3\} \\
& E=\{3,4,3\} \\
& F=\{4,\{3\}\}
\end{aligned}
$$

Which sets are equal to each other?

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\begin{aligned}
& A \subseteq B:=\forall x(x \in A \rightarrow x \in B) \\
&=\begin{array}{l}
A=\{1,2,3\} \\
B=\{3,4,5\} \\
C=\{3,4\}
\end{array}
\end{aligned}
$$

$$
\begin{array}{lll}
\\
\varnothing \subseteq A ? & \text { QUESTIONS } \\
A \subseteq B ? & X \\
C \subseteq B ? & \\
\end{array}
$$

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Note the domain restriction.
We will use a shorthand restriction to a set

$$
\forall x \in \mathrm{~A}, \mathrm{P}(\mathrm{x}):=\forall \mathrm{x}(\mathrm{x} \in \mathrm{~A} \rightarrow \mathrm{P}(\mathrm{x}))
$$

Restricting all quantified variables improves clarity

