
CSE 311: Foundations of Computing

Lecture 12:  Modular Exponentiation, Set Theory



gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)

= gcd(30, 126 mod 30) = gcd(30, 6)

= gcd(6, 30 mod 6) = gcd(6, 0)

= 6

Last class: Euclid’s Algorithm for GCD

Repeatedly use gcd �, � = gcd �, � mod � to reduce 

numbers until you get gcd (�, 0) = �.

660 = 5 * 126 + 30

126 = 4 *   30 +   6

30 = 5 *     6 +   0

Tableau form (which is much easier to work with and will be more useful):

Equations with recursive calls:

Each line computes both 

quotient and remainder of the 

shifted numbers



Last class: Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find �, � such that

gcd �, � = �� + ��

35 = 1 * 27 + 8

27 = 3 * 8   + 3

8 = 2 * 3   + 2

3 = 1 * 2    + 1

2 = 2 * 1    + 0

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: � = 35, � = 27

Compute gcd(35, 27): 



Last class: Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find �, � such that

gcd �, � = �� + ��

1 =  3  – 1 * 2

=  3 – 1 * (8 – 2 * 3)

=   3 – 8 + 2 * 3

= (–1) * 8 + 3 * 3

= (–1) * 8 + 3 * (27 – 3 * 8)

= (–1) * 8 + 3 * 27 + (–9) * 8

=   3 * 27  + (–10) * 8

=   3 * 27  + (–10) * (35 – 1 * 27)

=   3 * 27   + (–10) * 35 + 10 * 27

=   (–10) * 35  +  13 * 27

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: � = 35, � = 27

Optional Check:

(–10) * 35 = –350 

13 * 27  =   351

Use equations to substitute

back



Let 0 ≤ �, � < �. Then, � is the multiplicative 

inverse of � (modulo �)  iff �� ≡ 1 (mod �).   

Last class:  Multiplicative inverse (mod �)

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

mod 7

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10



Let 0 ≤ �, � < �. Then, � is the multiplicative 

inverse of � (modulo �)  iff �� ≡ 1 (mod �).   

Last class:  Multiplicative inverse (mod �)

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10

This can’t exist if � and � have

a common factor >1.

Idea: � is like  �� (mod �)

so multiplying by � is 

equivalent to dividing by �. 



Finding multiplicative inverse mod �

Suppose that gcd �, � = 1.

Using Extended Euclidean Algorithm

find integers � and � such that �� + �� = 1.

Therefore �� ≡ 1 (mod �).

The multiplicative inverse � of � modulo � must also 

satisfy 0 ≤ � < � so we set � = � mod �.

It works since �� ≡ �� ≡ 1 (mod �)



Example

Solve:  7" ≡ 1 (mod 26)



Example

Solve:  7" ≡ 1 (mod 26)

First compute and check that gcd (26, 7)  =  1

26 = 3 ∗ 7 +  5             5 =  26 –  3 ∗ 7

7  =  1 ∗ 5 +  2             2 =  7 –  1 ∗ 5  

5  =  2 ∗ 2 +  1            1 =  5 –   2 ∗ 2 

     2  =  2 ∗ 1 +  0  



Example

Solve:  7" ≡ 1 (mod 26)

Then rewrite equations in form for substitution

26 = 3 ∗ 7 +  5             5 =  26 –  3 ∗ 7

7  =  1 ∗ 5 +  2             2 =  7 –  1 ∗ 5  

5  =  2 ∗ 2 +  1            1 =  5 –   2 ∗ 2 

     2  =  2 ∗ 1 +  0  



Example

Solve:  7" ≡ 1 (mod 26)

Apply substitutions from bottom to top.

26 = 3 ∗ 7 +  5             5 =  26 –  3 ∗ 7

7  =  1 ∗ 5 +  2             2 =  7 –  1 ∗ 5  

5  =  2 ∗ 2 +  1            1 =  5 –   2 ∗ 2 

     2  =  2 ∗ 1 +  0  

1   =   5        –    2 ∗ 2  

       =   5        –    2 ∗ (7 – 1 ∗ 5)

=  (– 2) ∗ 7      +  3 ∗ 5

=  – 2 ∗ 7      +  3 ∗ (26 – 3 ∗ 7)

=   −11 ∗ 7   +  3 ∗ 26



Example

Solve:  7" ≡ 1 (mod 26)

Read off coefficient and reduce modulo 26.

26 = 3 ∗ 7 +  5             5 =  26 –  3 ∗ 7

7  =  1 ∗ 5 +  2             2 =  7 –  1 ∗ 5  

5  =  2 ∗ 2 +  1            1 =  5 –   2 ∗ 2 

     2  =  2 ∗ 1 +  0  

1   =   5        –    2 ∗ 2  

       =   5        –    2 ∗ (7 – 1 ∗ 5)

=  (– 2) ∗ 7      +  3 ∗ 5

=  – 2 ∗ 7      +  3 ∗ (26 – 3 ∗ 7)

=   −11 ∗ 7   +  3 ∗ 26

Now (−11) mod 26 = 15.   So, " = 15 + 26&  for integer &.

Multiplicative inverse of 7 modulo 26



Example of a more general equation

Now solve:  7' ≡ 3 (mod 26)

We already computed that 15 is the multiplicative inverse 

of 7 modulo 26. That is,  7 · 15 ≡ 1 (mod 26)

If ' is a solution, then multiplying by 15 we have

15 · 7 · ' ≡ 15 · 3 (mod 26)

Substituting 15 · 7 ≡ 1 (mod 26) on the left gives

' = 1 · ' ≡ 15 · 3 ≡ 19 (mod 26)

This shows that every solution ' is congruent to 19.



Example of a more general equation

Now solve:7' ≡ 3 (mod 26)

Multiplying both sides of ' ≡ 19 (mod 26) by 7 gives

7' ≡ 7 · 19 ≡ 3 (mod 26)

So, any ' ≡ 19 (mod 26) is a solution. 

Thus, the set of numbers of the form ' = 19 + 26&, 

for any integer &, are exactly solutions of this equation.



Math mod a prime is especially nice

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

gcd (�, �) = 1 if � is prime and 0 < � < � so 

can always solve these equations mod a prime.

mod 7

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1



Hashing

Scenario:  

Map a small number of data values from a large 

domain 0, 1, … , * − 1 ...

...into a small set of locations 0,1, … , + − 1 so 

one can quickly check if some value is present

• hash " = �" + �  mod / for / a prime close to +

– Relies on gcd (�, /) = 1 to avoid many collisions

• Depends on all of the bits of the data 

– helps avoid collisions due to similar values

– need to manage them if they occur



Hashing

• hash " = �" + �  mod / for / a prime close to +

• Applications

– map integer to location in array (hash tables)

– map user ID or IP address to machine

requests from the same user / IP address go to the same machine

requests from different users / IP addresses spread randomly



Attack on RSA security with GCD

• RSA public key includes 0 that is the product 

of two large randomly chosen primes 1, 2

– Everyone can see all the public keys (millions)

– Security depends on keeping 1 and 2 secret

– OK since factoring 0 seems very hard

• In 2012 a new attack using GCD broke a 

huge number of RSA public keys!

– Weak keys: Algorithms/devices cut corners:

Skimped on random bits or size of primes



Attack on RSA security with GCD

Weak keys:  few random bits

– Few enough that some public keys 03 and 04

happen to share just one of their two factors:

03 = 12 and  04 = 15

– Then can break both since 1 = gcd (03, 04)

2012:  11 million RSA keys, 23,500 broken

2016:  1024-bit RSA keys available from Internet

– 26 million keys, 63,500 broken

2019:  750 million RSA keys, 250,000 broken

– IoT (Internet of Things) devices often the culprit



RSA Relies on Modular Exponentiation

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1

mod 7



Modular Exponentiation:  (Essential for RSA)

• Compute 7836581453

• Compute 7836581453 mod 104729

• Output is small

– need to keep intermediate results small



Small Multiplications

By the multiplicative property modulo 0, if you want to compute 

67 mod 0 then you can do the following:

1. Reduce 6 and 7 modulo 0 to get 6 mod 0 and 7 mod 0

2. Multiply to produce 8 = (6 mod 0) 7 mod 0

3. Output 8 mod 0

Claim: 8 mod 0 = 67 mod 0

Proof:  Just need to show that 8 ≡ 67 (mod 0).

That follows from  (6 mod 0) ≡ 6 (mod 0)

(7 mod 0) ≡ 7 (mod 0)

and the multiplicative property since 8 is the product of the   

left sides and 67 is the product of the right sides.



Repeated Squaring – small and fast

Then we have 67 mod 0 = 6 mod 0 7 mod 0  mod 0

So            64 mod 0  =   6 mod 0 4 mod 0

and          69 mod 0 =  64 mod 0 4 mod 0

and          6: mod 0 =  69 mod 0 4 mod 0

and          63; mod 0 =  6: mod 0 4 mod 0

and          6<4 mod 0 =  63; mod 0 4 mod 0

Can compute 6= mod 0 for = = 4> in only > steps

What if = is not a power of 4?



Fast Exponentiation Algorithm 

81453 in binary is 10011101000101101

81453 = 216 + 213 + 212 + 211 + 29 + 25 + 23 + 22 + 20

The fast exponentiation algorithm computes 

�? mod � using ≤ 2log & multiplications mod � 

a81453 = a216+213
+2

12+211+29+25+23+22+20

= a216
· a213

· a2
12

· a211
· a29

· a25
· a23

· a22
· a20

a81453 mod m= (a216
· a213

· a2
12

· a211
· a29

· a25
· a23

· a22
· a20

) mod m   

= (…(((((a216
mod m ·

a213
mod m ) mod m · 

a2
12

mod m) mod m · 

a211
mod m) mod m · 

a29
mod m) mod m · 

a25
mod m) mod m · 

a23
mod m) mod m · 

a22
mod m) mod m · 

a20
mod m)  mod m 

Uses only 16 + 8 = 24 

multiplications



Fast Exponentiation:  6= mod 0 for all =

64Amod 0 = 6A mod 0
4

mod 0

64AB3mod � =  (6 mod 0) · 64A mod 0  mod 0 

Another way....



Recursive Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {

return 1;

} else if ((k % 2) == 0) {

long temp = FastModExp(a,k/2,modulus);

return (temp * temp) % modulus;

} else {

long temp = FastModExp(a,k-1,modulus);

return (a * temp) % modulus;

}

}

64Amod 0 = 6A mod 0
4

mod 0

64AB3mod 0 =  (6 mod 0) · 64A mod 0  mod 0 



Using Fast Modular Exponentiation

• Your e-commerce web transactions use SSL (Secure 

Socket Layer) based on RSA encryption

• RSA

– Vendor chooses random 1024-bit or 2048-bit primes 1, 2

and 1024/2048-bit exponent C.  Computes 0 = 1 ⋅ 2

– Vendor broadcasts (0, C)

– To send 6 to vendor, you compute E = 6C mod 0 using 

fast modular exponentiation and send E to the vendor.

– Using secret 1, 2 the vendor computes F that is the 

multiplicative inverse of C mod (1 − 3)(2 − 3).

– Vendor computes EF mod 0 using fast modular 

exponentiation.

– Fact:   6 = EF mod 0 for G < 6 < 0 unless 1|6 or 2|6

…as of 2023



Sets



Sets

Sets are collections of objects called elements. 

Write a ∈ B to say that a is an element of set B,

and a ∉ B to say that it is not.

Some simple examples

A = {1}

B = {1, 3, 2}

C = {☐, 1}

D = {{17}, 17}

E = {1, 2, 7, cat, dog, ∅, α}



Some Common Sets

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}

ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}

ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48

ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
O

[n] is the set {1, 2, …, n} when n is a natural number

∅ = {} is the empty set; the only set with no elements



Sets can be elements of other sets

For example

A = {{1},{2},{1,2},∅}
B = {1,2}

Then B ∈ A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Notes:

A ⊆ B  :=  ∀ x (x ∈ A → x ∈ B)

A ⊇ B means B ⊆ A

A ⊂ B means A ⊆ B but A ≠ B

A = B  := ∀ x (x ∈ A ↔ x ∈ B)



Definition: Equality

A and B are equal if they have the same elements

A = B  := ∀ x (x ∈ A ↔ x ∈ B)

A = {1, 2, 3}

B = {3, 4, 5}

C = {3, 4}

D = {4, 3, 3}

E = {3, 4, 3}

F = {4, {3}}

Which sets are equal to each other?



Definition: Subset

A is a subset of B if every element of A is also in B

A = {1, 2, 3}

B = {3, 4, 5}

C = {3, 4}

QUESTIONS

∅ ⊆ A?

A ⊆ B?

C ⊆ B?

A ⊆ B  :=  ∀ x (x ∈ A → x ∈ B)



Definition: Subset

A is a subset of B if every element of A is also in B

∀x∈A, P(x)  := ∀x (x ∈ A → P(x))

Note the domain restriction.

We will use a shorthand restriction to a set

A ⊆ B  :=  ∀ x (x ∈ A → x ∈ B)

Restricting all quantified variables improves clarity


