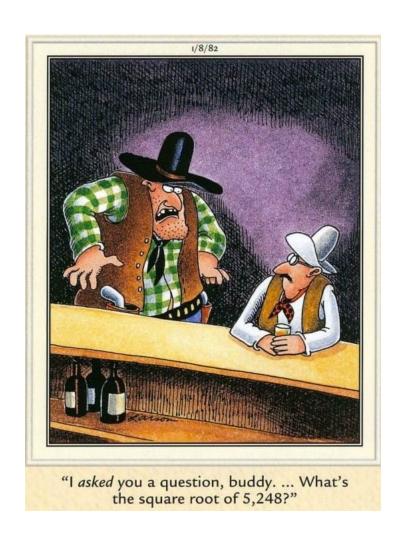
CSE 311: Foundations of Computing

Lecture 12: Modular Exponentiation, Set Theory



Last class: Euclid's Algorithm for GCD

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(a, 0) = a.

Equations with recursive calls:

$$gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$$

= $gcd(30, 126 \mod 30) = gcd(30, 6)$
= $gcd(6, 30 \mod 6) = gcd(6, 0)$
= 6

Tableau form (which is much easier to work with and will be more useful):

Each line computes both quotient and remainder of the shifted numbers

Last class: Extended Euclidean algorithm

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Example: a = 35, b = 27

Compute gcd(35, 27):

$$35 = 1 * 27 + 8$$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$
 $2 = 2 * 1 + 0$

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

Last class: Extended Euclidean algorithm

Can use Euclid's Algorithm to find s, t such that

$$\gcd(a,b) = sa + tb$$

Example:
$$a = 35, b = 27$$

Use equations to substitute back

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

Optional Check:

$$(-10) * 35 = -350$$

 $13 * 27 = 351$

$$= sa + tb$$

$$1 \neq 3 - 1 * 2$$

$$= 3 - 1 * (8 - 2 * 3)$$

$$= 3 - 8 + 2 * 3$$

$$= (-1) * 8 + 3 * 3$$

$$= (-1) * 8 + 3 * 27 + (-9) * 8$$

$$= 3 * 27 + (-10) * (35 - 1 * 27)$$

$$= 3 * 27 + (-10) * 35 + 10 * 27$$

Last class: Multiplicative inverse \pmod{m}

Let $0 \le a, b < m$. Then, b is the multiplicative inverse of a (modulo m) iff $ab \equiv 1 \pmod{m}$.

20-2=1	
--------	--

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
(S)	0	5	3	(1)	6	4	2
6	0	6	5	4	3	2	1

5

	Х	U	1	2	3/	4	5	Ь	/	8	9
	0	0	0	0	0	0	0	0	0	0	0
	1	0	1	2	3	4	5	6	7	8	9
	2	0	2	4	6	8	0	2	4	6	8
	3	0	3	6	9	2	5	8	1	4	7
	4	0	4	8	2	6	0	4	8	2	6
	5	0	5	0	5	0	5	0	5	0	5
>	6	0	6	2	8	4	0	6	2	8	4
	7	0	7	4	~	8	5	2	9	6	3
	8	0	8	6	4	2	0	8	6	4	2
	9	0	9	8	7	6	5	4	3	2	1

mod 7

mod 10

Last class: Multiplicative inverse \pmod{m}

Let $0 \le a, b < m$. Then, b is the multiplicative inverse of a (modulo m) iff $ab \equiv 1 \pmod{m}$.

This can't exist if a and m have a common factor >1.

Idea: b is like $a^{-1} \pmod{m}$ so multiplying by b is equivalent to dividing by a.

Х	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Finding multiplicative inverse mod m

Suppose that gcd(a, m) = 1.

Using Extended Euclidean Algorithm find integers s and t such that sa + tbb = 1.

Therefore $sa \equiv 1 \pmod{m}$.

The multiplicative inverse b of a modulo m must also satisfy $0 \le b < m$ so we set $b = s \mod m$.

It works since $ba \equiv sa \equiv 1 \pmod{m}$

Solve: $7x \equiv 1 \pmod{26}$

Solve: $7x \equiv 1 \pmod{26}$

First compute and check that gcd(26,7) = 1

$$26 = 3 * 7 + 5$$
 $7 = 1 * 5 + 2$
 $5 = 2 * 2 + 1$
 $2 = 2 * 1 + 0$

Solve: $7x \equiv 1 \pmod{26}$

Then rewrite equations in form for substitution

$$26 = 3 * 7 + 5$$
 $5 = 26 - 3 * 7$
 $7 = 1 * 5 + 2$ $2 = 7 - 1 * 5$
 $5 = 2 * 2 + 1$ $1 = 5 - 2 * 2$
 $2 = 2 * 1 + 0$

Solve: $7x \equiv 1 \pmod{26}$

Apply substitutions from bottom to top.

$$26 = 3 * 7 + 5$$
 $5 = 26 - 3 * 7$
 $7 = 1 * 5 + 2$ $2 = 7 - 1 * 5$
 $5 = 2 * 2 + 1$ $1 = 5 - 2 * 2$
 $2 = 2 * 1 + 0$

$$\begin{array}{rcl}
1 &=& 5 & - & 2 * 2 \\
 &=& 5 & - & 2 * (7 - 1 * 5) \\
 &=& (-2) * 7 & + & 3 * 5 \\
 &=& (-2) * 7 & + & 3 * (26 - 3 * 7) \\
 &=& (-11) * 7 & + & 3 * 26
\end{array}$$

Solve:
$$7x \not\equiv 1 \pmod{26}$$

 $(15.1) \times = (5.1) \pmod{26}$ $0.26. \times = (5) \pmod{26}$

Read off coefficient and reduce modulo 26.

$$26 = 3 * 7 + 5$$
 $5 = 26 - 3 * 7$
 $7 = 1 * 5 + 2$ $2 = 7 - 1 * 5$
 $5 = 2 * 2 + 1$ $1 = 5 - 2 * 2$
 $2 = 2 * 1 + 0$

$$1 = 5 - 2 * 2$$

$$= 5 - 2 * (7 - 1 * 5)$$

$$= (-2) * 7 + 3 * 5$$

$$= (-2) * 7 + 3 * (26 - 3 * 7)$$

$$= (-11) * 7 + 3 * 26$$

Multiplicative inverse of 7 modulo 26

Now $(-11) \mod 26 = 15$. So, x = 15 + 26k for integer k.

Example of a more general equation

Now solve: $7y \equiv 3 \pmod{26}$

We already computed that 15 is the multiplicative inverse of 7 modulo 26. That is, $7 \cdot 15 \equiv 1 \pmod{26}$

If y is a solution, then multiplying by 15 we have $15 \cdot 7 \cdot y \equiv 15 \cdot 3 \pmod{26}$

Substituting $15 \cdot 7 \equiv 1 \pmod{26}$ on the left gives $y = 1 \cdot y \equiv 15 \cdot 3 \equiv 19 \pmod{26}$

This shows that <u>every</u> solution y is congruent to 19.

Example of a more general equation

Now solve: $7y \equiv 3 \pmod{26}$

Multiplying both sides of $y \equiv 19 \pmod{26}$ by 7 gives

$$7y \equiv 7 \cdot 19 \equiv 3 \pmod{26}$$

So, any $y \equiv 19 \pmod{26}$ is a solution.

Thus, the set of numbers of the form y = 19 + 26k, for any integer k, are exactly solutions of this equation.

Math mod a prime is especially nice

gcd(a, m) = 1 if m is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Attack on RSA security with GCD

- RSA public key includes m that is the product of two large randomly chosen primes p, q
 - Everyone can see all the public keys (millions)
 - Security depends on keeping p and q secret
 - OK since factoring m seems very hard
- In 2012 a new attack using GCD broke a huge number of RSA public keys!
 - Weak keys: Algorithms/devices cut corners:
 Skimped on random bits or size of primes

Attack on RSA security with GCD

Weak keys: few random bits

– Few enough that some public keys m_1 and m_2 happen to share just one of their two factors:

$$m_1 = pq$$
 and $m_2 = pr$

- Then can break both since $p = \gcd(m_1, m_2)$

2012: 11 million RSA keys, 23,500 broken

2016: 1024-bit RSA keys available from Internet

26 million keys, 63,500 broken

2019: 750 million RSA keys, 250,000 broken

IoT (Internet of Things) devices often the culprit

RSA Relies on Modular Exponentiation

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a ¹	a ²	a ³	a ⁴	a ⁵	a ⁶
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

mod 7

Modular Exponentiation: (Essential for RSA)

• Compute 78365⁸⁰⁴²⁹

- BOK 5 digits

• Compute 78365⁸⁰⁴²⁹ mod 104729

6 Q. g.ts

- Output is small
 - need to keep intermediate results small

Small Multiplications

a = qm + r

By the multiplicative property modulo m, if you want to compute $ab \mod m$ then you can do the following:

- .1. Reduce $oldsymbol{a}$ and $oldsymbol{b}$ modulo $oldsymbol{m}$ to get $oldsymbol{a}$ mod $oldsymbol{m}$ and $oldsymbol{b}$ mod $oldsymbol{m}$
- 2. Multiply to produce $\mathbf{c} = (\mathbf{a} \mod \mathbf{m})(\mathbf{b} \mod \mathbf{m})$
- 3. Output *c* mod *m*

Claim: $c \mod m = ab \mod m$

Proof: Just need to show that $c \equiv ab \pmod{m}$.

That follows from $(a \mod m) \equiv a \pmod m$

 $(\boldsymbol{b} \bmod \boldsymbol{m}) \equiv \boldsymbol{b} \pmod {\boldsymbol{m}}$

and the multiplicative property since c is the product of the left sides and ab is the product of the right sides.

Repeated Squaring – small and fast

Then we have $ab \mod m = ((a \mod m)(b \mod m)) \mod m$

```
So a^2 \mod m = (a \mod m)^2 \mod m

and a^4 \mod m = (a^2 \mod m)^2 \mod m

and a^8 \mod m = (a^4 \mod m)^2 \mod m

and a^{16} \mod m = (a^8 \mod m)^2 \mod m

and a^{32} \mod m = (a^{16} \mod m)^2 \mod m
```

Can compute $a^k \mod m$ for $k = 2^i$ in only i steps What if k is not a power of 2?

Fast Modular Exponentiation

Simple Example:

```
To compute a^{10} \mod m:

Compute a^2 \mod m = (a \mod m)^2 \mod m
a^4 \mod m = (a^2 \mod m)^2 \mod m
a^8 \mod m = (a^4 \mod m)^2 \mod m
```

```
Then a^{10} \mod m = ((a^8 \mod m)(a^2 \mod m)) \mod m
```

Also $a^{11} \mod m = ((a^{10} \mod m)(a \mod m)) \mod m$

Fast Exponentiation Algorithm

80429 in binary is 10011101000101101

```
80429 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^9 + 2^5 + 2^3 + 2^2 + 2^0
 \left(a^{80429} \right)_{a} 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{9} + 2^{5} + 2^{3} + 2^{2} + 2^{0}
              = a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^9} \cdot a^{2^5} \cdot a^{2^3} \cdot a^{2^2} \cdot a^{2^0}
 a^{80429} \mod m + (a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^9} \cdot a^{2^5} \cdot a^{2^3} \cdot a^{2^2} \cdot a^{2^0}) \mod m
         = (...)((((a^{2^{16}} \mod m)))
                            a<sup>213</sup> mod m ) mod m
                                                                                               Uses only 16 + 8 = 24
                                   a<sup>212</sup> mod m) mod m
                                                                                                    multiplications
                                       a<sup>211</sup> mod m) mod m
                                             a<sup>29</sup> mod m) mod m
                                                    a<sup>25</sup> mod m) mod m
                                                         a<sup>2<sup>3</sup></sup> mod m) mod m
                                                              a<sup>2<sup>2</sup></sup> mod m) mod m
                                                                  a<sup>20</sup> mod m) mod m
```

The fast exponentiation algorithm computes $a^k \mod m$ using $\leq 2 \log k$ multiplications $\mod m$

Fast Exponentiation: $a^k \mod m$ for all k

Another way....

$$a^{2j} \operatorname{mod} m = (a^j \operatorname{mod} m)^2 \operatorname{mod} m$$

$$a^{2j+1} \mod m = ((a \mod m) \cdot (a^{2j} \mod m)) \mod m$$

Recursive Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
         else if ((k % 2) == 0) {
            long temp = FastModExp(a,k/2,modulus);
            return (temp * temp) % modulus;
        } else {
            long temp = FastModExp(a,k-1,modulus);
            return (a * temp) % modulus;
    a^{2j} \mod m = (a^j \mod m)^2 \mod m
a^{2j+1} \mod m = ((a \mod m) \cdot (a^{2j} \mod m)) \mod m
```

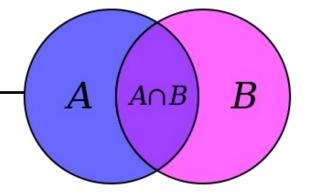
Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption
- RSA ...as of 2023
 - Vendor chooses random 1024-bit of 2048-bit primes p, q and 1024/2048-bit exponent e. Computes $m = p \cdot q$
 - Vendor broadcasts (m, e)
 - To send a to vendor, you compute $C = a^e \mod m$ using fast modular exponentiation and send C to the vendor.
 - Using secret p, q the vendor computes d that is the multiplicative inverse of e mod (p-1)(q-1).
 - Vendor computes $C^d \mod m$ using fast modular exponentiation.
 - Fact: $a = C^d \mod m$ for 0 < a < m unless p|a or q|a

Sets

Sets





Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

Some simple examples

A = {1}
B = {1, 3, 2}
C = {
$$\square$$
, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, \emptyset , α }

17 2123

Some Common Sets

```
N is the set of Natural Numbers; N = {0, 1, 2, ...}

Z is the set of Integers; Z = {..., -2, -1, 0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. ½, -17, 32/48

R is the set of Real Numbers; e.g. 1, -17, 32/48, \pi, \sqrt{2}

[n] is the set {1, 2, ..., n} when n is a natural number \emptyset = {} is the empty set; the only set with no elements
```

"blackboard bold"

R N

Sets can be elements of other sets

For example

 $A = \{\{1\},\{2\},\{1,2\},\emptyset\}$

 $B = \{1,2\}$

Then $B \in A$.

Definitions

A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

• Notes: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$

 $A \supseteq B \text{ means } B \subseteq A$

 $A \subset B$ means $A \subseteq B$ but $A \neq B$

Definition: Equality

A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

Which sets are equal to each other?

