CSE 311: Foundations of Computing

Lecture 11: Application, Primes, GCD

Last class: Modular Arithmetic: Properties

$$
\text { If } \boldsymbol{a} \equiv \boldsymbol{b}(\bmod m) \text { and } \boldsymbol{b} \equiv \boldsymbol{c}(\bmod m) \text { then } \boldsymbol{a} \equiv \boldsymbol{c}(\bmod m)
$$

$$
\begin{aligned}
& \text { If } \boldsymbol{a} \equiv \boldsymbol{b}(\bmod m) \text { and } \boldsymbol{c} \equiv \boldsymbol{d}(\bmod m) \text { then } \\
& \qquad \boldsymbol{a}+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{d}(\bmod m) \text { and } \\
& \boldsymbol{a} \boldsymbol{c} \equiv \boldsymbol{b} \boldsymbol{d}(\bmod m)
\end{aligned}
$$

Corollary: If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ then

$$
\begin{aligned}
\boldsymbol{a}+\boldsymbol{c} & \equiv \boldsymbol{b}+\boldsymbol{c}(\bmod m) \text { and } \\
\boldsymbol{a} \boldsymbol{c} & \equiv \boldsymbol{b} \boldsymbol{c}(\bmod m)
\end{aligned}
$$

These allow us to solve problems in modular arithmetic, e.g.

- add/subtract numbers from both sides of equations
- multiply numbers on both sides of equations.
- use chains of equivalences

Basic Applications of mod

- Two's Complement
- Hashing
- Pseudo random number generation

n-bit Unsigned Integer Representation

- Represent integer x as sum of powers of 2:

$$
\begin{array}{lll}
99=64+32+2+1 & =2^{6}+2^{5}+2^{1}+2^{0} \\
18=16+2 & =2^{4}+2^{1}
\end{array}
$$

If $b_{n-1} 2^{n-1}+\cdots+b_{1} 2+b_{0}$ with each $b_{i} \in\{0,1\}$ then binary representation is $b_{n-1} \cdots b_{2} b_{1} b_{0}$

- For n = 8:

99: 01100011
18: 00010010

Easy to implement arithmetic mod 2^{n} ... just throw away bits $n+1$ and up

$$
\begin{gathered}
2^{n} \mid 2^{n+k} \quad \text { so } \quad b_{n+k} 2^{n+k} \equiv 0\left(\bmod 2^{n}\right) \\
\text { for } k \geq 0
\end{gathered}
$$

n-bit Unsigned Integer Representation

- Largest representable number is $2^{n}-1$

$$
\begin{array}{rlrl}
2^{n}=100 \ldots . .000 & & (n+1 \text { bits }) \\
2^{n}-1 & =11 \ldots . .111 & & \text { (} n \text { bits })
\end{array}
$$

THE WALL STREET JOURNAL.
Berkshire Hathaway's Stock Price Is 1100
Much for Computers

32 bits
1 = \$0.0001
\$429,496.7295 max

Berkshire Hathaway Inc. (BRK-A)
NYSE - Nasdaq Real Time Price. Currency in USD
436,401.00 +679.50 (+0.16\%)
At close: 4:00PM EDT

Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that $-2^{n-1}<x<2^{n-1}$
First bit as the sign, $n-1$ bits for the value
$99=64+32+2+1$
$18=16+2$

For $\mathrm{n}=8$:
99: 01100011
-18: 10010010

Problem: this has both +0 and -0 (annoying)

Two's Complement Representation

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $-2^{n-1} \leq x<0$
x is represented by the binary representation of $x+2^{n}$ result is in the range $2^{n-1} \leq x<2^{n}$

0	1	2	3	4	5	6	7	-8	-7	-6	-5	-4	-3	-2	-1
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Two's Complement Representation

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $-2^{n-1} \leq x<0$
x is represented by the binary representation of $x+2^{n}$ result is in the range $2^{n-1} \leq x<2^{n}$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |

$$
99=64+32+2+1
$$

$$
18=16+2
$$

For $\mathrm{n}=8$:
99: 01100011
-18: 11101110
$(-18+256=238)$

Two's Complement Representation

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $-2^{n-1} \leq x<0$
x is represented by the binary representation of $x+2^{n}$
result is in the range $2^{n-1} \leq x<2^{n}$

0	1	2	3	4	5	6	7	-8	-7	-6	-5	-4	-3	-2	-1
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Key property: First bit is still the sign bit!
Key property: Twos complement representation of any number \boldsymbol{y} is equivalent to $y\left(\bmod 2^{n}\right)$ so arithmetic works $\left(\bmod 2^{n}\right)$

$$
y+2^{n} \equiv y\left(\bmod 2^{n}\right)
$$

Two's Complement Representation

- For $0<x \leq 2^{n-1},-x$ is represented by the binary representation of $-x+2^{n}$
- How do we calculate $-x$ from x ?
- E.g., what happens for "return -x;" in Java?

$$
-x+2^{n}=\left(2^{n}-1\right)-x+1
$$

- To compute this, flip the bits of x then add 1 !
- All 1 's string is $2^{n}-1$, so

Flip the bits of x means replace x by $2^{n}-1-x$ Then add 1 to get $-x+2^{n}$

Hashing

Scenario:
Map a small number of data values from a large domain $\{0,1, \ldots, M-1\} \ldots$
...into a small set of locations $\{0,1, \ldots, n-1\}$ so one can quickly check if some value is present

- hash $(x)=x \bmod p$ for p a prime close to n
$-\operatorname{or} \operatorname{hash}(x)=(a x+b) \bmod p$
- Depends on all of the bits of the data
- helps avoid collisions due to similar values
- need to manage them if they occur

Hashing

- hash $(x)=x \bmod p$ for p a prime close to n
- deterministic function with random-ish behavior
- Applications
- map integer to location in array (hash tables)
- map user ID or IP address to machine
requests from the same user / IP address go to the same machine requests from different users / IP addresses spread randomly

Pseudo-Random Number Generation

Linear Congruential method

$$
x_{n+1}=\left(a x_{n}+c\right) \bmod m
$$

Choose random x_{0}, a, c, m and produce a long sequence of x_{n} 's

More Number Theory
 Primes and GCD

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

$$
p>1 \wedge \forall x((x>0) \wedge(x \mid p)) \rightarrow((x=1) \vee(x=p)))
$$

A positive integer that is greater than 1 and is not prime is called composite.

$$
p>1 \wedge \exists x((x>0) \wedge(x \mid p) \wedge(x \neq 1) \wedge(x \neq p))
$$

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a "unique" prime factorization

$$
\begin{aligned}
& 48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
& 591=3 \cdot 197 \\
& 45,523=45,523 \\
& 321,950=2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
& 1,234,567,890=2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{aligned}
$$

Algorithmic Problems

- Multiplication
- Given primes $p_{1}, p_{2}, \ldots, p_{k}$, calculate their product $p_{1} p_{2} \ldots p_{k}$
- Factoring
- Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077 285356959533479219732245215172640050726 365751874520219978646938995647494277406 384592519255732630345373154826850791702 612214291346167042921431160222124047927 4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347 92197322452151726400507263657518745202199786469389956 47494277406384592519255732630345373154826850791702612 21429134616704292143116022212404792747377940806653514 19597459856902143413

334780716989568987860441698482126908177047949837 137685689124313889828837938780022876147116525317 43087737814467999489

367460436667995904282446337996279526322791581643 430876426760322838157396665112792333734171433968 10270092798736308917

Famous Algorithmic Problems

- Factoring
- Given an integer n, determine the prime factorization of n
- Primality Testing
- Given an integer n, determine if n is prime
- Factoring is hard
- (on a classical computer)
- Primality Testing is easy

Greatest Common Divisor

GCD (a, b):
Largest integer d such that $d \mid a$ and $d \mid b$

- $\operatorname{GCD}(100,125)=$
- $\operatorname{GCD}(17,49)=$
- $\operatorname{GCD}(11,66)=$
- $\operatorname{GCD}(13,0)=$
- $\operatorname{GCD}(180,252)=$

$$
d=\operatorname{GCD}(a, b) \text { iff }(d \mid a) \wedge(d \mid b) \wedge \forall x(((x \mid a) \wedge(x \mid b)) \rightarrow(x \leq d))
$$

GCD and Factoring

$$
\begin{aligned}
& a=2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11=46,200 \\
& b=2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13=204,750
\end{aligned}
$$

$\mathrm{GCD}(\mathrm{a}, \mathrm{b})=2^{\min (3,1)} \cdot 3^{\min (1,2)} \cdot 5^{\min (2,3)} \cdot 7^{\min (1,1)} \cdot 11^{\min (1,0)} \cdot 13^{\min (0,1)}$

Factoring is hard!
Can we compute GCD(a,b) without factoring?

Useful GCD Fact

Let a and b be positive integers. We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

Proof:

We will show that the numbers dividing a and b are the same as those dividing b and $a \bmod b$.
i.e., $d \mid a$ and $d \mid b$ iff $d \mid b$ and $d \mid(a \bmod b)$.

Hence, their set of common divisors are the same, which means that their greatest common divisor is the same.

Useful GCD Fact

Let a and b be positive integers. We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

Proof:

By definition of mod, $a=q b+(a \bmod b)$ for some integer $q=a$ div b.
(®) Suppose that $d \mid b$ and $d \mid(a \bmod b)$.
Then $b=m d$ and $(a \bmod b)=n d$ for some integers m and n.
Therefore $a=q b+(a \bmod b)=q m d+n d=(q m+n) d$.
So $d \mid a$. Therefore $d \mid a$ and $d \mid b$.
(Δ) Suppose that $d \mid a$ and $d \mid b$.
Then $a=k d$ and $b=j d$ for some integers k and j.
Therefore $(a \bmod b)=a-q b=k d-q j d=(k-q j) d$.
So $d \mid(a \bmod b)$ also. Therefore $d \mid b$ and $d \mid(a \bmod b)$.
Since they have the same common divisors, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.

Another simple GCD fact

Let a be a positive integer.
We have $\operatorname{gcd}(a, 0)=a$.

Euclid's Algorithm

```
gcd(a, b)=\operatorname{gcd}(b,a\operatorname{mod}b)\quad\operatorname{gcd}(a,0)=a
int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
    if (b == 0) {
        return a;
    } else {
        return gcd(b, a % b);
    }
}
```

Note: $\operatorname{gcd}(\mathrm{b}, \mathrm{a})=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.

Equations with recursive calls:

$$
\begin{array}{rlrl}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \bmod 126) & =\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \bmod 30) & =\operatorname{gcd}(30,6) \\
& =\operatorname{gcd}(6,30 \bmod 6) & & =\operatorname{gcd}(6,0) \\
& =6 & &
\end{array}
$$

$$
\begin{aligned}
660 & =5 * 126+30 \\
126 & =4 * \quad 30+6 \\
30 & =5 * \quad 6+0
\end{aligned}
$$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.

Equations with recursive calls:

$$
\left.\begin{array}{rl}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \bmod 126)
\end{array}\right)=\operatorname{gcd}(126,30) ~ 子 \begin{aligned}
& =\operatorname{gcd}(30,126 \bmod 30) \\
& =\operatorname{gcd}(30,6) \\
& =\operatorname{gcd}(6,30 \bmod 6) \\
& =\operatorname{gcd}(6,0) \\
& =6
\end{aligned}
$$

Tableau form (which is much easier to work with and will be more useful):

$$
\begin{array}{r}
660=5 * 126+30 \\
126=4 * 30+6 \\
30=5 * 6+0
\end{array}
$$

Division $(\bmod m)$

We already can

- Add, subtract, and, multiply numbers $(\bmod m)$

What about dividing numbers $(\bmod m)$?
In ordinary arithmetic, to divide by a we can multiply by $b=a^{-1}=1 / a$, the multiplicative inverse of a

- It doesn't always exist
- if $a=0$
- if the domain is integers and $a \neq 1,-1$
- If it does exist then $a b=1$

Multiplicative inverse $(\bmod m)$

Let $0 \leq a, b<m$. Then, b is the multiplicative inverse of $a(\operatorname{modulo} m)$ iff $a b \equiv 1(\bmod m)$.

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 7$

x	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

$\bmod 10$

Multiplicative inverse $\bmod m$

Suppose that b is the multiplicative inverse of a $(\operatorname{modulo} m)$ i.e. $a b \equiv 1(\bmod m)$.

Then there is a k such that $k m=a b-1$.
Equivalently, $a b=k m+1$.
So, when looking for the multiplicative inverse of a (modulo m), we are looking for a number b such that $a b$ is one more than a multiple of m.

Also, we have $a b-k m=1$, so if $d \mid a$ and $d \mid m$, then $d \mid 1$. Therefore, if a has a multiplicative inverse $($ modulo $m)$, then $\operatorname{gcd}(a, m)=1$.

Finding inverses with Euclid I: Bézout's theorem

If a and b are positive integers, then there exist integers \boldsymbol{s} and \boldsymbol{t} such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

$\forall a \forall b((a>0 \wedge b>0) \rightarrow \exists s \exists t(\operatorname{gcd}(a, b)=s a+t b))$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD(a,b) in tableau form):
Example: $a=35, b=27$
Compute $\operatorname{gcd}(35,27)$:

$$
\begin{aligned}
a & =q * b+r \\
35 & =1 * 27+8 \\
27 & =3 * 8+3 \\
8 & =2 * 3+2 \\
3 & =1 * 2+1 \\
2 & =2 * 1+0
\end{aligned}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):
Example: $a=35, b=27$

$$
\begin{array}{rlrl}
\mathrm{a} & =\mathrm{q} * \mathrm{~b}+\mathrm{r} & r & =a-q * b \\
35 & =1 * 27+8 & 8 & =35-1 * 27 \\
27 & =3 * 8+3 & 3 & =27-3 * 8 \\
8 & =2 * 3+2 & 2 & =8-2 * 3 \\
3 & =1 * 2+1 & 1 & =3-1 * 2 \\
2 & =2 * 1+0 & &
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Example: $a=35, b=27$

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 3=27-3 * 8 \\
& 2=8-2 * 3 \\
& (1)=3-1 * 2
\end{aligned}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Example: $a=35, b=27 \quad 1=3-1^{*} 2$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Example: $a=35, b=27 \quad 1=3-1 * 2 \quad$ Plug in for 2

$$
=3-1 *(8-2 * 3)
$$

$$
\begin{aligned}
& 8=35-1^{*} 27 \\
& 3=27-3^{*} 8 \\
& 2=8-2^{*} 3 \\
& 1=3-1^{*} 2
\end{aligned}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Example: $a=35, b=27$

$$
\begin{aligned}
1 & =3-1 * 2 \\
& =3-1 *(8-2 * 3) \\
& =3-8+2 * 3 \quad \text { Re-arrange into } \\
& =(-1) * 8+3 * 3 \quad 8 \text { 's and 3's }
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline 8=35-1^{*} 27 \\
\hline 3=27-3^{*} 8 \\
\hline 2=8-2^{*} 3 \\
1=3-1^{*} 2
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Example: $a=35, b=27$

$$
\begin{aligned}
1 & =3-1 * 2 \\
& =3-1 *(8-2 * 3) \\
& =3-8+2 * 3 \\
& =(-1) * 8+3 * 3
\end{aligned}
$$

\[

\]

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Example: $a=35, b=27$

$$
\begin{aligned}
& 1=3-1 * 2 \\
&=3-1 *(8-2 * 3) \\
&=3-8+2 * 3 \\
&=(-1) * 8+3 * 3 \\
&=(-1) * 8+3 *(27-3 * 8) \\
&=(-1) * 8+3 * 27+(-9) * 8 \\
&=3 * 27+(-10) * 8 \text { Re-arrange into } \\
& \text { 27's and 8's }
\end{aligned}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Example: $a=35, b=27$

$$
\begin{aligned}
1 & =3-1 * 2 \\
& =3-1 *(8-2 * 3) \\
& =3-8+2 * 3 \\
& =(-1) * 8+3 * 3
\end{aligned}
$$

$$
\begin{array}{|l|l}
\hline 8=35-1 * 27 & \text { Plug in for } 8 \\
\hline 3=27-3 * 8 \\
=
\end{array}
$$

$$
=(-1) * 8+3 *(27-3 * 8)
$$

$$
2=8-2 * 3
$$

$$
=(-1) * 8+3 * 27+(-9) * 8
$$

$$
1=3-1 * 2
$$

$$
=3 * 27+(-10) * 8
$$

$$
=3 * 27+(-10) *(35-1 * 27)
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Example: $a=35, b=27$

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 3=27-3 * 8 \\
& 2=8-2 * 3 \\
& 1=3-1 * 2
\end{aligned}
$$

Optional Check:
$(-10) * 35=-350$
$13 * 27=351$

$$
\begin{aligned}
& 1=3-1 * 2 \\
& =3-1 *(8-2 * 3) \\
& =3-8+2 * 3 \\
& =(-1) * 8+3 * 3 \\
& =(-1) * 8+3 *(27-3 * 8) \\
& =(-1) * 8+3 * 27+(-9) * 8 \\
& =3 * 27+(-10) * 8 \\
& =3 * 27+(-10) *(35-1 * 27)
\end{aligned}
$$

Finding multiplicative inverse $\bmod m$

Suppose that $\operatorname{gcd}(a, m)=1$.
By Bézout's Theorem, there exist integers s and t such that $s a+t m=1$.

Therefore $s a \equiv 1(\bmod m)$.
The multiplicative inverse b of a modulo m must also satisfy $0 \leq b<m$ so we set $b=s \bmod m$.

It works since $b a \equiv s a \equiv 1(\bmod m)$
So... we can compute multiplicative inverses with the extended Euclidean algorithm.

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let
$Q=P+1$. (Note that $Q>1$.)

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let

$$
Q=P+1 .(\text { Note that } Q>1 .)
$$

Case 1: Q is prime: Then Q is a prime different from all of $p_{1}, p_{2}, \ldots, p_{n}$ since it is bigger than all of them.
Case 2: Q is not prime: Then Q has some prime factor p (which must be in the list). Therefore $p \mid P$ and $p \mid Q$ so $p \mid(Q-P)$ which means that $p \mid 1$.
Both cases are contradictions, so the assumption is false (proof by cases). ■

