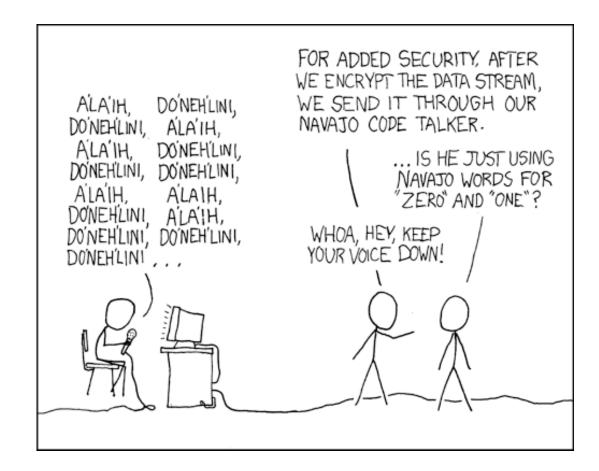
Lecture 11: Application, Primes, GCD



Last class: Modular Arithmetic: Properties

If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Corollary:	If $a \equiv b \pmod{m}$ then
	$a + c \equiv b + c \pmod{m}$ and
	$ac \equiv bc \pmod{m}$

These allow us to solve problems in modular arithmetic, e.g.

- add/subtract numbers from both sides of equations
- multiply numbers on both sides of equations.
- use chains of equivalences

Basic Applications of mod

- Two's Complement
 - Hashing
 - Pseudo random number generation

n-bit Unsigned Integer Representation

• Represent integer *x* as sum of powers of 2:

99 =
$$64 + 32 + 2 + 1$$
 = $2^{6} + 2^{5} + 2^{1} + 2^{0}$
18 = $16 + 2$ = $2^{4} + 2^{1}$

If $b_{n-1}2^{n-1} + \dots + b_12 + b_0$ with each $b_i \in \{0,1\}$ then binary representation is $b_{n-1}\dots b_2 b_1 b_0$

• For n = 8: 99: 0110 0011

18: 0001 0010

Easy to implement arithmetic $\mod 2^n$... just throw away bits n+1 and up

$$2^{n} \mid 2^{n+k} \quad \text{so} \quad b_{n+k} 2^{n+k} \equiv 0 \pmod{2^{n}}$$

for $k \ge 0$

n-bit Unsigned Integer Representation

• Largest representable number is $2^n - 1$

$$2^{n} = 100...000$$
 (n+1 bits
 $2^{n} - 1 = 11...111$ (n bits)

THE WALL STREET JOURNAL.

32 bits 1 = \$0.0001 \$429,496.7295 max

Berkshire Hathaway Inc. (BRK-A) NYSE - Nasdaq Real Time Price. Currency in USD

436,401.00 +679.50 (+0.16%)

Sign-Magnitude Integer Representation

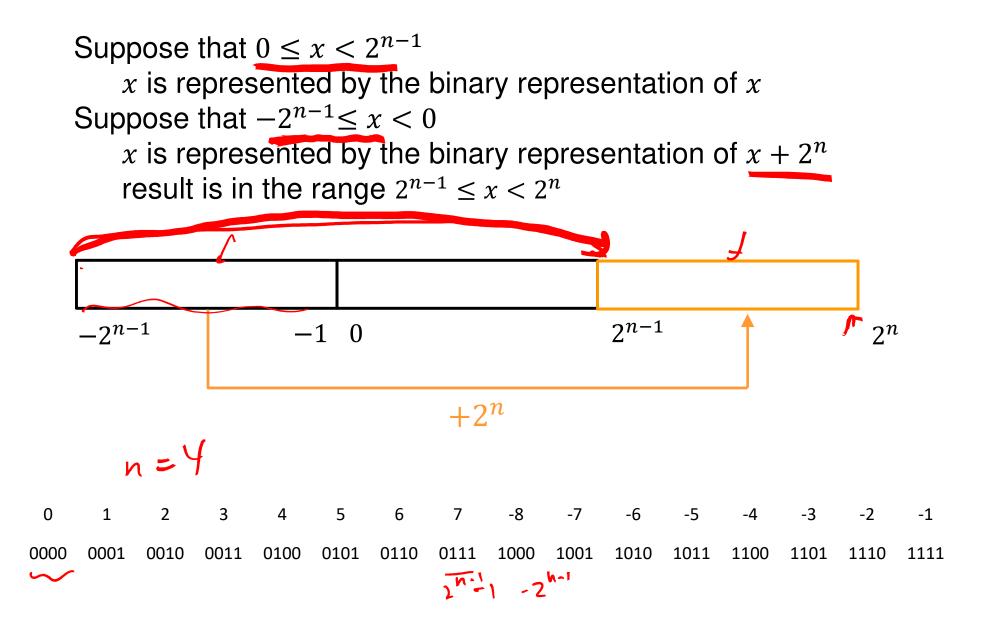
n-bit signed integers Suppose that $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n - 1 bits for the value 99 = 64 + 32 + 2 + 1 18 = 16 + 2For n = 8:

99: 0110 0011

-18: 1001 00<u>10</u>

Problem: this has both +0 and -0 (annoying)

Two's Complement Representation



Two's Complement Representation

Suppose that $0 \le x < 2^{n-1}$ x is represented by the binary representation of xSuppose that $-2^{n-1} \le x < 0$ x is represented by the binary representation of $x + 2^n$ result is in the range $2^{n-1} \le x < 2^n$

7 -8 -7 -6 -5 -4 -3 -2 -1

$$99 = 64 + 32 + 2 + 1$$

$$18 = 16 + 2$$

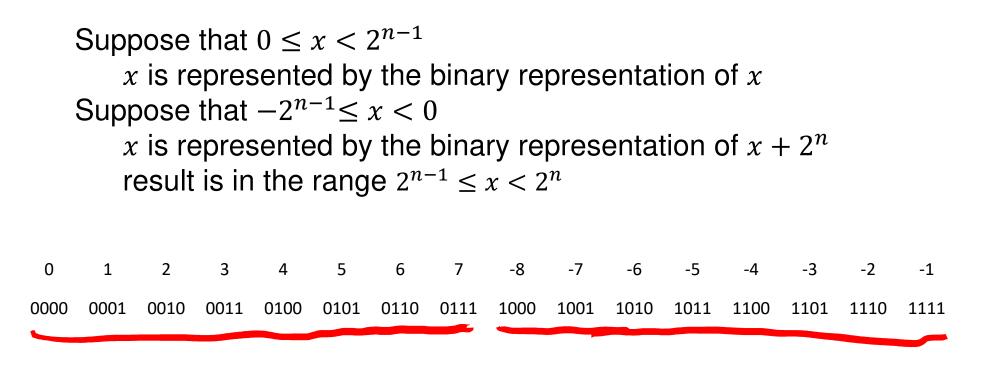
For n = 8:

$$99: 0110\ 0011$$

$$-18: 1110\ 1110$$

$$(-18 + 256 = 238)$$

Two's Complement Representation



Key property: First bit is still the sign bit!

Key property: Twos complement representation of any number y is equivalent to $y \pmod{2^n}$ so arithmetic works $\pmod{2^n}$

$$y + 2^n \equiv y \pmod{2^n}$$

• For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $-x + 2^n$ - How do we calculate -x from x? - E.g., what happens for "return -x;" in Java?¹ (((())) x 010(100 $-x + 2^n = (2^n - 1) - x + 1$ • To compute this, flip the bits of x then add 1! 116 - All 1's string is $2^n - 1$, so [001 Flip the bits of x means replace x by $2^n - 1 - x$ Then add 1 to get $-x + 2^n$

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$...

...into a small set of locations $\{0,1, \dots, n-1\}$ so one can quickly check if some value is present

- hash(x) = x mod p for p a prime close to n
 or hash(x) = (ax + b) mod p
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Hashing

- $hash(x) = x \mod p$ for p a prime close to n
- deterministic function with random-ish behavior
- Applications
 - map integer to location in array (hash tables)
 - map user ID or IP address to machine

requests from the same user / IP address go to the same machine requests from different users / IP addresses spread randomly

Pseudo-Random Number Generation

Linear Congruential method

$$x_{n+1} = (a x_n + c) \mod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

More Number Theory Primes and GCD

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

 $p > 1 \land \forall x ((x > 0) \land (x | p)) \rightarrow ((x = 1) \lor (x = p)))$

A positive integer that is greater than 1 and is not prime is called *composite*.

 $p > 1 \land \exists x ((x > 0) \land (x \mid p) \land (x \neq 1) \land (x \neq p))$

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a "unique" prime factorization

 $48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$ $591 = 3 \cdot 197$ 45,523 = 45,523 $321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137$ $1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803$

- Multiplication
 - Given primes $p_1, p_2, ..., p_k$, calculate their product $p_1p_2 ... p_k$
- Factoring
 - Given an integer *n*, determine the prime factorization of *n*

Factor the following 232 digit number [RSA768]:

Famous Algorithmic Problems

- Factoring
 - Given an integer *n*, determine the prime factorization of *n*
- Primality Testing
 - Given an integer n, determine if n is prime

- Factoring is hard
 - (on a classical computer)
- Primality Testing is easy

GCD(a, b):

Largest integer d such that $d \mid a$ and $d \mid b$

- GCD(100, 125) = **2**,
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) = 13
- GCD(180, 252) = **3** 6

 $d = \mathsf{GCD}(a,b) \text{ iff } (d \mid a) \land (d \mid b) \land \forall x (((x \mid a) \land (x \mid b)) \rightarrow (x \leq d))$

GCD and Factoring

- $a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$
- $b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$ $= 2 \cdot 3 \cdot 5^{2} \cdot 3 \cdot 5^{2} \cdot 3 \cdot 5^{2} \cdot 5^{2}$

Factoring is hard!

Can we compute GCD(a,b) without factoring?

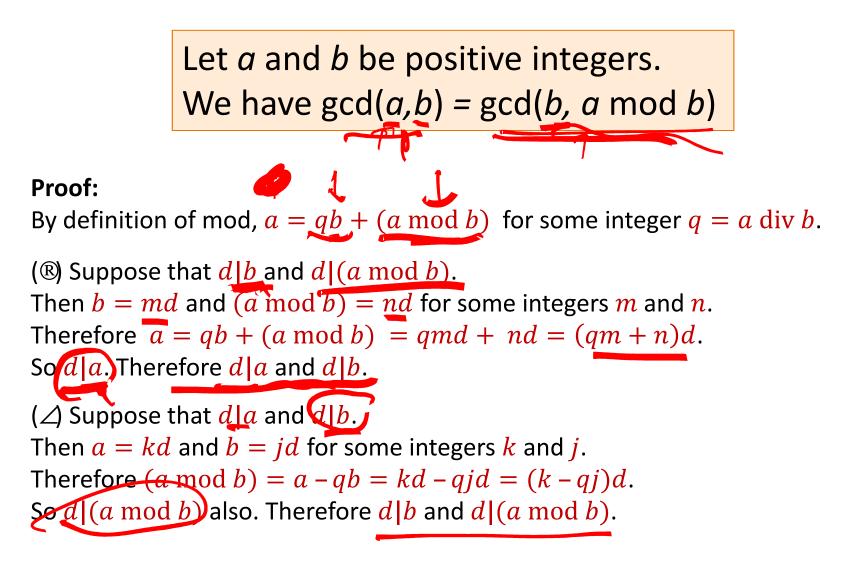
Useful GCD Fact

Let *a* and *b* be positive integers. We have $gcd(a,b) = gcd(b, a \mod b)$

Proof:

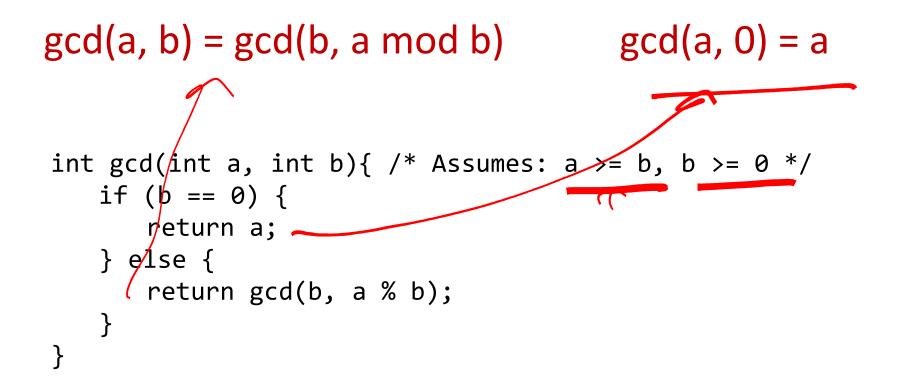
We will show that the numbers dividing a and b are the same as those dividing b and $a \mod b$. i.e., d|a and d|b iff d|b and $d|(a \mod b)$.

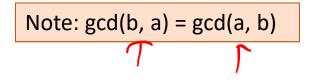
Hence, their set of common divisors are the same, which means that their greatest common divisor is the same.



Since they have the same common divisors, $gcd(a, b) = gcd(b, a \mod b)$.

Let a be a positive integer. We have gcd(a,0) = a.





Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

gcd(660,126)

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

Equations with recursive calls:

```
gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)
= gcd(30, 126 \mod 30) = gcd(30, 6)
= gcd(6, 30 \mod 6) = gcd(6, 0)
= 6
```

```
660 = 5 * 126 + 30
126 = 4 * 30 + 6
30 = 5 * 6 + 0
```

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

Equations with recursive calls:

$$gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$$

= $gcd(30, 126 \mod 30) = gcd(30, 6)$
= $gcd(6, 30 \mod 6) = gcd(6, 0)$
= 6

Tableau form (which is much easier to work with and will be more useful):

660 = 5 * 126 + 30 126 = 4 * 30 + 630 = 5 * 6 + 0

Each line computes both quotient and remainder of the shifted numbers

Division (mod m)

We already can

- Add, subtract, and, multiply numbers (mod m)

What about dividing numbers $(\mod m)$?

In ordinary arithmetic, to divide by \underline{a} we can multiply by $\underline{b} = a^{-1} = 1/a$, the *multiplicative inverse* of \underline{a}

- It doesn't always exist
 - if a = 0
 - if the domain is integers and $a \neq 1, -1$
- If it does exist then ab = 1

Multiplicative inverse (mod *m*)

Let $0 \le a, b < m$. Then, \underline{b} is the multiplicative inverse of $a \pmod{m}$ iff $\underline{ab} \equiv 1 \pmod{m}$.

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Х	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

mod 7

mod 10

Suppose that *b* is the multiplicative inverse of *a* (modulo *m*) i.e. $ab \equiv 1 \pmod{m}$.

Then there is a k such that km = ab - 1. Equivalently, ab = km + 1.

So, when looking for the multiplicative inverse of a (modulo m), we are looking for a number b such that ab is one more than a multiple of m.

Also, we have ab - km = 1, so if d|a and d|m, then d|1. Therefore, if a has a multiplicative inverse (modulo m), then gcd(a, m) = 1.

Finding inverses with Euclid I: Bézout's theorem

If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb.

 $\forall a \forall b ((a > 0 \land b > 0) \rightarrow \exists s \exists t (gcd(a, b) = sa + tb))$

Extended Euclidean algorithm

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Extended Euclidean algorithm

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 1 (Compute GCD(a,b) in tableau form):

Example: a = 35, b = 27

Compute gcd(35, 27):

a = q * b + r

$$35 = 1 * 27 + 8$$

 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$
 $2 = 2 * 1 + 0^{7}$

Extended Euclidean algorithm

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):

Example: a = 35, b = 27

$$a = q * b + r$$
 $r = a - q * b$ $35 = 1 * 27 + 8$ $8 = 35 - 1 * 27$ $27 = 3 * 8 + 3$ $3 = 27 - 3 * 8$ $8 = 2 * 3 + 2$ $2 = 8 - 2 * 3$ $3 = 1 * 2 + 1$ $1 = 3 - 1 * 2$ $2 = 2 * 1 + 0$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

Example: a = 35, b = 27

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

• Can use Euclid's Algorithm to find *s*, *t* such that gcd(a,b) = sa + tb**Step 3 (Backward Substitute Equations): Example:** a = 35, b = 27 1 = 3 - 1 * 28 = 35 - 1 * 273 = 27 - 3 * 82 = 8 - 2 * 31 = 3 - 1 * 2

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

Example: a = 35, b = 27 1 = 3 - 1 * 2 Plug in for 2 = 3 - 1 * (8 - 2 * 3) 8 = 35 - 1 * 27 3 = 27 - 3 * 8 2 = 8 - 2 * 31 = 3 - 1 * 2

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

3 = 27 - 3 * 82 = 8 - 2 * 3

1 = 3 - 1 * 2

Example:
$$a = 35, b = 27$$

 $1 = 3 - 1 * 2$
 $= 3 - 1 * (8 - 2 * 3)$
 $= 3 - 8 + 2 * 3$
 $= (-1) * 8 + 3 * 3$
 $8 = 35 - 1 * 27$
Re-arrange into
 $= (-1) * 8 + 3 * 3$
 $1 = 3 - 1 * 2$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Example:
$$a = 35, b = 27$$

 $1 = 3 - 1 * 2$
 $= 3 - 1 * (8 - 2 * 3)$
 $= 3 - 8 + 2 * 3$
 $= (-1) * 8 + 3 * 3$
 $8 = 35 - 1 * 27$ Plug in for 3
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Example: a = 35, b = 27 1 = 3 - 1 * 2

$$= 3 - 1 * (8 - 2 * 3)$$

= 3 - 8 + 2 * 3
= (-1) * 8 + 3 * 3

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Example:
$$a = 35, b = 27$$

 $1 = 3 - 1 * 2$
 $= 3 - 1 * (8 - 2 * 3)$
 $= 3 - 8 + 2 * 3$
 $= (-1) * 8 + 3 * 3$
 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$
 $= (-1) * 8 + 3 * (27 - 3 * 8)$
 $= (-1) * 8 + 3 * 27 + (-9) * 8$
 $= 3 * 27 + (-10) * 8$

• Can use Euclid's Algorithm to find s, t such that gcd(a,b) = sa + tbStep 3 (Backward Substitute Equations): Example: a = 35, b = 27= 3 - 1 * 2= 3 - 1 * (8 - 2 * 3)= 3 - 8 + 2 * 3=(-1) * 8 + 3 * 38 = 35 - 1 * 27= (-1) * 8 + 3 * (27 - 3 * 8)3 = 27 - 3 * 8= (-1) * 8 + 3 * 27 + (-9) * 82 = 8 - 2 * 3= 3 * 27 + (-10) * 81 = 3 - 1 * 2= 3 * 27 + (-10) * (35 - 1 * 27)**Optional Check:** = 3 * 27 + (-10) * 35 + 10 * 27**Re-arrange into** (-10) * 35 = -35035's and 27's = (-10) * 35 + 13 * 2713 * 27 = 351

Suppose that gcd(a, m) = 1.

By Bézout's Theorem, there exist integers *s* and *t* such that sa + tm = 1.

Therefore $sa \equiv 1 \pmod{m}$.

The multiplicative inverse *b* of *a* modulo *m* must also satisfy $0 \le b < m$ so we set $b = s \mod m$.

It works since $ba \equiv sa \equiv 1 \pmod{m}$

So... we can compute multiplicative inverses with the extended Euclidean algorithm.

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list p_1, p_2, \dots, p_n .

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list p_1, p_2, \dots, p_n .

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1. (Note that Q > 1.)

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list p_1, p_2, \dots, p_n .

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1. (Note that Q > 1.)

Case 1: Q is prime: Then Q is a prime different from all of p_1, p_2, \ldots, p_n since it is bigger than all of them.

Case 2: Q is not prime: Then Q has some prime factor p (which must be in the list). Therefore p|P and p|Q so p|(Q - P) which means that p|1.

Both cases are contradictions, so the assumption is false (proof by cases). ■