
CSE 311: Foundations of Computing

Lecture 11:  Application, Primes, GCD



Last class: Modular Arithmetic: Properties

If � ≡ � (mod 	) then 

� + � ≡ � + � mod 	 and

�� ≡ �� mod 	

Corollary:

If � ≡ � mod 	 and � ≡  mod 	 then 

� + � ≡ � +  mod 	 and  

�� ≡ � mod 	

If � ≡ � (mod 	) and � ≡ � (mod 	) then � ≡ � (mod 	)

These allow us to solve problems in modular arithmetic, e.g.

• add/subtract numbers from both sides of equations

• multiply numbers on both sides of equations.

• use chains of equivalences



Basic Applications of mod

• Two’s Complement

• Hashing 

• Pseudo random number generation



• Represent integer � as sum of powers of 2:

99 = 64 + 32 + 2 + 1 = 26 + 25 + 21 + 20

18 = 16 + 2 = 24 + 21

If ����2��� + ⋯ + ��2 + �� with each �� ∈ 0,1
then binary representation is bn-1...b2 b1 b0

• For n = 8:

99:    0110 0011

18:    0001  0010

�-bit Unsigned Integer Representation

Easy to implement arithmetic ��� � 

... just throw away bits n+1 and up

2� | 2�"# so    ��"#2�"# ≡ 0 (mod 2�)

for $ ≥ 0



�-bit Unsigned Integer Representation

• Largest representable number is 2� & 1

2n = 100…000 (n+1 bits)

2n – 1 =   11…111 (n bits)

32 bits

1 = $0.0001

$429,496.7295 max



Sign-Magnitude Integer Representation

�-bit signed integers

Suppose that &2��� < � < 2���

First bit as the sign, � − 1 bits for the value

99 = 64 + 32 + 2 + 1

18 = 16 + 2

For n = 8:

99:    0110 0011

-18:   1001  0010

Problem: this has both +0 and -0 (annoying)



Two’s Complement Representation

Suppose that 0 ≤ � < 2���

� is represented by the binary representation of �

Suppose that −2���≤ � < 0

� is represented by the binary representation of � + 2�

result is in the range 2��� ≤ � < 2�

2���0−1−2��� 2�

+2�

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ � < 2���

� is represented by the binary representation of �

Suppose that −2���≤ � < 0

� is represented by the binary representation of � + 2�

result is in the range 2��� ≤ � < 2�

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99:    0110 0011
-18:    1110 1110 (-18 + 256 = 238)

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ � < 2���

� is represented by the binary representation of �

Suppose that −2���≤ � < 0

� is represented by the binary representation of � + 2�

result is in the range 2��� ≤ � < 2�

Key property: Twos complement representation of any number )
is equivalent to )  mod �  so arithmetic works  (mod � )

Key property: First bit is still the sign bit!

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

* + 2� ≡ * (mod 2�)



Two’s Complement Representation

• For                         ,  &� is represented by the 

binary representation of &� + 2�

– How do we calculate –x from x?

– E.g., what happens for “return –x;” in Java?

• To compute this, flip the bits of � then add 1!

– All 1’s string is  2� & 1, so

Flip the bits of � means replace � by 2� & 1 & �

Then add 1 to get &� + 2�

&� + 2� + 2� & 1 & � + 1



Hashing

Scenario:  

Map a small number of data values from a large 

domain 0, 1, … , - & 1 ...

...into a small set of locations 0,1, … , � & 1 so 

one can quickly check if some value is present

• hash � + � mod 1 for 1 a prime close to �

– or hash � + (2� + �) mod 1

• Depends on all of the bits of the data 

– helps avoid collisions due to similar values

– need to manage them if they occur



Hashing

• hash � + � mod 1 for 1 a prime close to �

• deterministic function with random-ish behavior

• Applications

– map integer to location in array (hash tables)

– map user ID or IP address to machine

requests from the same user / IP address go to the same machine

requests from different users / IP addresses spread randomly



Pseudo-Random Number Generation

Linear Congruential method

��"� + 2 �� � 3  mod 	

Choose random ��, 2, 3, 	 and produce

a long sequence of ��’s



More Number Theory
Primes and GCD



Primality

An integer p greater than 1 is called prime if the 

only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not 

prime is called composite.

1 > 1  �  ∀� ( � > 0 ∧ (� | 1)) � ((� = 1) ∨ (� = 1)))

1 > 1  �  ∃� ( � > 0 ∧ (� | 1) � (� ≠ 1) � (� ≠ 1))



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a 

“unique” prime factorization

48 =  2 • 2 • 2 • 2 • 3

591 = 3 • 197

45,523 = 45,523

321,950 = 2 • 5 • 5 • 47 • 137

1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803



Algorithmic Problems

• Multiplication

– Given primes 1�, 1:, …, 1#, calculate their 

product 1�1: … 1#

• Factoring

– Given an integer �, determine the prime 

factorization of �



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077

285356959533479219732245215172640050726

365751874520219978646938995647494277406

384592519255732630345373154826850791702

612214291346167042921431160222124047927

4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347

92197322452151726400507263657518745202199786469389956

47494277406384592519255732630345373154826850791702612

21429134616704292143116022212404792747377940806653514

19597459856902143413

334780716989568987860441698482126908177047949837

137685689124313889828837938780022876147116525317

43087737814467999489

367460436667995904282446337996279526322791581643

430876426760322838157396665112792333734171433968

10270092798736308917



Famous Algorithmic Problems

• Factoring

– Given an integer �, determine the prime 

factorization of �

• Primality Testing

– Given an integer �, determine if � is prime

• Factoring is hard

– (on a classical computer)

• Primality Testing is easy



Greatest Common Divisor

GCD(a, b): 

Largest integer ; such that ; ∣ 2 and ; ∣ �

• GCD(100, 125) = 

• GCD(17, 49) = 

• GCD(11, 66) =

• GCD(13, 0) = 

• GCD(180, 252) =

; + GCD(2,�)  iff (; ∣ 2) � (; ∣ �) � ∀� (((� ∣ 2) � (� ∣ �)) � (� ≤ ;))



GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is hard!    

Can we compute GCD(a,b) without factoring?



Useful GCD Fact

Let a and b be positive integers.

We have gcd(a,b) = gcd(b, a mod b)

Proof:

We will show that the numbers dividing 2 and � are 

the same as those dividing � and 2 mod �.

i.e., ;|2 and ;|� iff ;|� and ;|(2 mod �).

Hence, their set of common divisors are the same,

which means that their greatest common divisor is the same.



Useful GCD Fact

Let a and b be positive integers.

We have gcd(a,b) = gcd(b, a mod b)

Proof:

By definition of mod, 2 + =� + (2 mod �) for some integer = + 2 div �.  

() Suppose that ;|� and ;|(2 mod �).

Then � + 	; and (2 mod �) + �; for some integers 	 and �.    

Therefore  2 + =� + (2 mod �)  + =	; +  �; + =	 + � ;.

So ;|2. Therefore ;|2 and ;|�.

(∠) Suppose that ;|2 and ;|�.

Then 2 + $; and � + @; for some integers $ and @.

Therefore (2 mod �) + 2 – =� + $; – =@; + ($ – =@);. 

So ;|(2 mod �) also. Therefore ;|� and ;|(2 mod �).

Since they have the same common divisors, gcd (2, �) + gcd (�, 2 mod �).



Another simple GCD fact

Let a be a positive integer.

We have gcd(a,0) = a.



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b)   gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */

if (b == 0) {

return a;

} else {

return gcd(b, a % b);

}

}

Note: gcd(b, a) = gcd(a, b)



Euclid’s Algorithm

Repeatedly use gcd 2, � + gcd �, 2 mod � to reduce 

numbers until you get gcd (D, 0) + D.

gcd(660,126) 



gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)

= gcd(30, 126 mod 30) = gcd(30, 6)

= gcd(6, 30 mod 6) = gcd(6, 0)

= 6

Euclid’s Algorithm

Repeatedly use gcd 2, � + gcd �, 2 mod � to reduce 

numbers until you get gcd (D, 0) + D.

660 = 5 * 126 + 30

126 = 4 *   30 +   6

30 = 5 *     6 +   0

gcd(660,126) = gcd(126, 660 mod 126) 

= gcd(30, 126 mod 30)

= gcd(6, 30 mod 6)

Equations with recursive calls:



gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)

= gcd(30, 126 mod 30) = gcd(30, 6)

= gcd(6, 30 mod 6) = gcd(6, 0)

= 6

Euclid’s Algorithm

Repeatedly use gcd 2, � + gcd �, 2 mod � to reduce 

numbers until you get gcd (D, 0) + D.

660 = 5 * 126 + 30

126 = 4 *   30 +   6

30 = 5 *     6 +   0

Tableau form (which is much easier to work with and will be more useful):

Equations with recursive calls:

Each line computes both 

quotient and remainder of the 

shifted numbers



Division (mod 	)

We already can

– Add, subtract, and, multiply numbers (mod 	)

What about dividing numbers (mod 	)?

In ordinary arithmetic, to divide by 2 we can multiply 

by � + 2�� + 1/2, the multiplicative inverse of 2

– It doesn’t always exist

• if 2 = 0

• if the domain is integers and 2 ≠ 1, &1

– If it does exist then 2� = 1



Let 0 ≤ 2, � < 	. Then, � is the multiplicative 

inverse of 2 (modulo 	)  iff 2� ≡ 1 (mod 	).   

Multiplicative inverse (mod 	)

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

mod 7

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10



Multiplicative inverse mod 	

Suppose that � is the multiplicative inverse of 2

(modulo 	) i.e.  2� ≡ 1 (mod 	).

Then there is a $ such that $	 + 2� & 1.

Equivalently, 2� = $	 � 1.

So, when looking for the multiplicative inverse of 2

(modulo 	), we are looking for a number � such that 

2� is one more than a multiple of 	. 

Also, we have 2� & $	 + 1, so if ;|2 and ;|	, 

then ;|1. Therefore, if 2 has a multiplicative inverse 

(modulo 	), then gcd 2, 	 + 1.



Finding inverses with Euclid I: Bézout’s theorem

If a and b are positive integers, then there exist 

integers s and t such that 

gcd(a,b) = sa + tb.

∀2 ∀� ( 2 > 0 ∧ � > 0 → ∃G ∃H gcd 2, � + G2 + H� )



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � + G2 + H�



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � + G2 + H�

Step 1 (Compute GCD(a,b) in tableau form):

35 = 1 * 27 + 8

27 = 3 * 8   + 3

8 = 2 * 3   + 2

3 = 1 * 2    + 1

2 = 2 * 1    + 0

Compute gcd(35, 27): 

Example: 2 = 35, � = 27

a   =  q * b  +   r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � = G2 + H�

Step 2 (Solve the equations for r):

a   =  q * b  +   r

35 = 1 * 27 + 8

27 = 3 * 8   + 3

8 = 2 * 3   + 2

3 = 1 * 2    + 1

2 = 2 * 1    + 0

r  =  a  -- q * b

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: 2 = 35, � = 27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � = G2 + H�

Step 3 (Backward Substitute Equations):

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: 2 = 35, � = 27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � = G2 + H�

Step 3 (Backward Substitute Equations):

1 =  3  – 1 * 2

=  3 – 1 * (8 – 2 * 3)

=   3 – 8 + 2 * 3

= (–1) * 8 + 3 * 3

= (–1) * 8 + 3 * (27 – 3 * 8)

= (–1) * 8 + 3 * 27 + (–9) * 8

=   3 * 27  + (–10) * 8

=   3 * 27  + (–10) * (35 – 1 * 27)

=   3 * 27   + (–10) * 35 + 10 * 27

=   13 * 27 + (–10) * 35

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: 2 = 35, � = 27



• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � = G2 + H�

Step 3 (Backward Substitute Equations):

Extended Euclidean algorithm

1 =  3  – 1 * 2

=  3 – 1 * (8 – 2 * 3)

=   3 – 8 + 2 * 3

= (–1) * 8 + 3 * 3

= (–1) * 8 + 3 * (27 – 3 * 8)

= (–1) * 8 + 3 * 27 + (–9) * 8

=   3 * 27  + (–10) * 8

=   3 * 27  + (–10) * (35 – 1 * 27)

=   3 * 27   + (–10) * 35 + 10 * 27

=   13 * 27 + (–10) * 35

Plug in for 2

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: 2 = 35, � = 27



• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � = G2 + H�

Step 3 (Backward Substitute Equations):

Extended Euclidean algorithm

1 =  3  – 1 * 2

=  3 – 1 * (8 – 2 * 3)

=   3 – 8 + 2 * 3

= (–1) * 8 + 3 * 3

= (–1) * 8 + 3 * (27 – 3 * 8)

= (–1) * 8 + 3 * 27 + (–9) * 8

=   3 * 27  + (–10) * 8

=   3 * 27  + (–10) * (35 – 1 * 27)

=   3 * 27   + (–10) * 35 + 10 * 27

=   13 * 27 + (–10) * 35

Re-arrange into

8’s and 3’s

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: 2 = 35, � = 27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � = G2 + H�

Step 3 (Backward Substitute Equations):

1 =  3  – 1 * 2

=  3 – 1 * (8 – 2 * 3)

=   3 – 8 + 2 * 3

= (–1) * 8 + 3 * 3

= (–1) * 8 + 3 * (27 – 3 * 8)

= (–1) * 8 + 3 * 27 + (–9) * 8

=   3 * 27  + (–10) * 8

=   3 * 27  + (–10) * (35 – 1 * 27)

=   3 * 27   + (–10) * 35 + 10 * 27

=   13 * 27 + (–10) * 35

Plug in for 38 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: 2 = 35, � = 27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � = G2 + H�

Step 3 (Backward Substitute Equations):

1 =  3  – 1 * 2

=  3 – 1 * (8 – 2 * 3)

=   3 – 8 + 2 * 3

= (–1) * 8 + 3 * 3

= (–1) * 8 + 3 * (27 – 3 * 8)

= (–1) * 8 + 3 * 27 + (–9) * 8

=   3 * 27  + (–10) * 8

=   3 * 27  + (–10) * (35 – 1 * 27)

=   3 * 27   + (–10) * 35 + 10 * 27

=   13 * 27 + (–10) * 35

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: 2 = 35, � = 27

Re-arrange into

27’s and 8’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � = G2 + H�

Step 3 (Backward Substitute Equations):

1 =  3  – 1 * 2

=  3 – 1 * (8 – 2 * 3)

=   3 – 8 + 2 * 3

= (–1) * 8 + 3 * 3

= (–1) * 8 + 3 * (27 – 3 * 8)

= (–1) * 8 + 3 * 27 + (–9) * 8

=   3 * 27  + (–10) * 8

=   3 * 27  + (–10) * (35 – 1 * 27)

=   3 * 27   + (–10) * 35 + 10 * 27

=   13 * 27 + (–10) * 35

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: 2 = 35, � = 27

Plug in for 8



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find G, H such that

gcd 2, � = G2 + H�

Step 3 (Backward Substitute Equations):

1 =  3  – 1 * 2

=  3 – 1 * (8 – 2 * 3)

=   3 – 8 + 2 * 3

= (–1) * 8 + 3 * 3

= (–1) * 8 + 3 * (27 – 3 * 8)

= (–1) * 8 + 3 * 27 + (–9) * 8

=   3 * 27  + (–10) * 8

=   3 * 27  + (–10) * (35 – 1 * 27)

=   3 * 27   + (–10) * 35 + 10 * 27

=   (–10) * 35  +  13 * 27

Re-arrange into

35’s and 27’s

8 = 35 – 1 * 27

3 = 27 – 3 * 8

2 =  8  – 2 * 3

1 =  3  – 1 * 2

Example: 2 = 35, � = 27

Optional Check:

(–10) * 35 = –350 

13 * 27  =   351



Finding multiplicative inverse mod 	

Suppose that gcd 2, 	 = 1.

By Bézout’s Theorem, there exist integers G and H

such that G2 + H	 = 1.

Therefore G2 ≡ 1 (mod 	).

The multiplicative inverse � of 2 modulo 	 must also 
satisfy 0 ≤ � < 	 so we set � = G mod 	.

It works since �2 ≡ G2 ≡ 1 (mod 	)

So… we can compute multiplicative inverses with the 
extended Euclidean algorithm.



Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes 
and call the full list 1�, 1:, … , 1�.

Define the number  Q = 1�· 1: · 1S · ⋯ · 1� and let 
T = Q + 1. (Note that T > 1.)

Case 1: T is prime: Then T is a prime different from 
all of 1�, 1:, … , 1� since it is bigger than all of them.

Case 2: T is not prime:  Then T has some prime 
factor 1 (which must be in the list).   Therefore 1|Q
and 1|T so 1| T –  Q  which means that 1|1.

Both cases are contradictions,
so the assumption is false (proof by cases).



Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes 
and call the full list 1�, 1:, … , 1�.

Define the number  Q = 1�· 1: · 1S · ⋯ · 1� and let 
T = Q + 1. (Note that T > 1.)

Case 1: T is prime: Then T is a prime different from 
all of 1�, 1:, … , 1� since it is bigger than all of them.

Case 2: T is not prime:  Then T has some prime 
factor 1 (which must be in the list).   Therefore 1|Q
and 1|T so 1| T –  Q  which means that 1|1.

Both cases are contradictions,
so the assumption is false (proof by cases).



Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes 
and call the full list 1�, 1:, … , 1�.

Define the number  Q = 1�· 1: · 1S · ⋯ · 1� and let 
T = Q + 1. (Note that T > 1.)

Case 1: T is prime: Then T is a prime different from 
all of 1�, 1:, … , 1� since it is bigger than all of them.

Case 2: T is not prime:  Then T has some prime 
factor 1 (which must be in the list).   Therefore 1|Q
and 1|T so 1| T –  Q  which means that 1|1.

Both cases are contradictions,
so the assumption is false (proof by cases).


