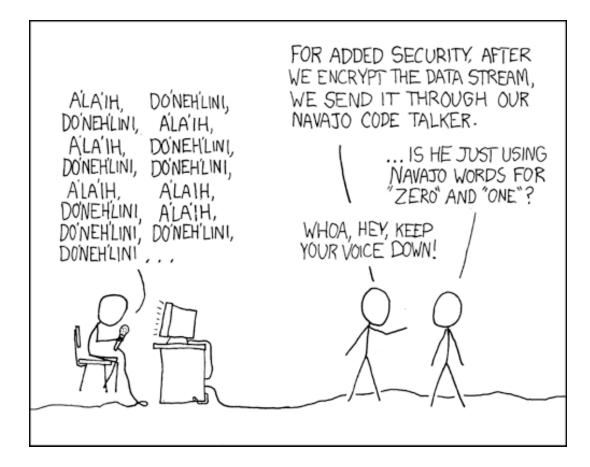
CSE 311: Foundations of Computing

Lecture 11: Application, Primes, GCD



Last class: Modular Arithmetic: Properties

If
$$a \equiv b \pmod{m}$$
 and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$

If
$$a \equiv b \pmod{m}$$
 and $c \equiv d \pmod{m}$ then
 $a + c \equiv b + d \pmod{m}$ and
 $ac \equiv bd \pmod{m}$

Corollary:	If $a \equiv b \pmod{m}$ then
	$a + c \equiv b + c \pmod{m}$ and
	$ac \equiv bc \pmod{m}$

These allow us to solve problems in modular arithmetic, e.g.

- add/subtract numbers from both sides of equations
- multiply numbers on both sides of equations.
- use chains of equivalences

Basic Applications of mod

- **•** Two's Complement
 - Hashing
 - Pseudo random number generation

n-bit Unsigned Integer Representation

- Represent integer *x* as sum of powers of 2:
 - 99 = 64 + 32 + 2 + 1 = $2^6 + 2^5 + 2^1 + 2^0$
 - $18 = 16 + 2 = 2^4 + 2^1$

If $b_{n-1}2^{n-1} + \dots + b_12 + b_0$ with each $b_i \in \{0,1\}$ then binary representation is $b_{n-1}\dots b_2 b_1 b_0$

• For n = 8:

99: 0110 001118: 0001 0010

Easy to implement arithmetic $mod 2^n$... just throw away bits n+1 and up

$$2^n \mid 2^{n+k}$$
 so $b_{n+k}2^{n+k} \equiv 0 \pmod{2^n}$
for $k \ge 0$

n-bit Unsigned Integer Representation

• Largest representable number is $2^n - 1$

 $2^{n} = 100...000$ (n+1 bits) $2^{n} - 1 = 11...111$ (n bits)

THE WALL STREET JOURNAL.

Berkshire Hathaway's Stock Price Is Too Much for Computers

32 bits 1 = \$0.0001 \$429,496.7295 max

Berkshire Hathaway Inc. (BRK-A)

NYSE - Nasdaq Real Time Price. Currency in USD

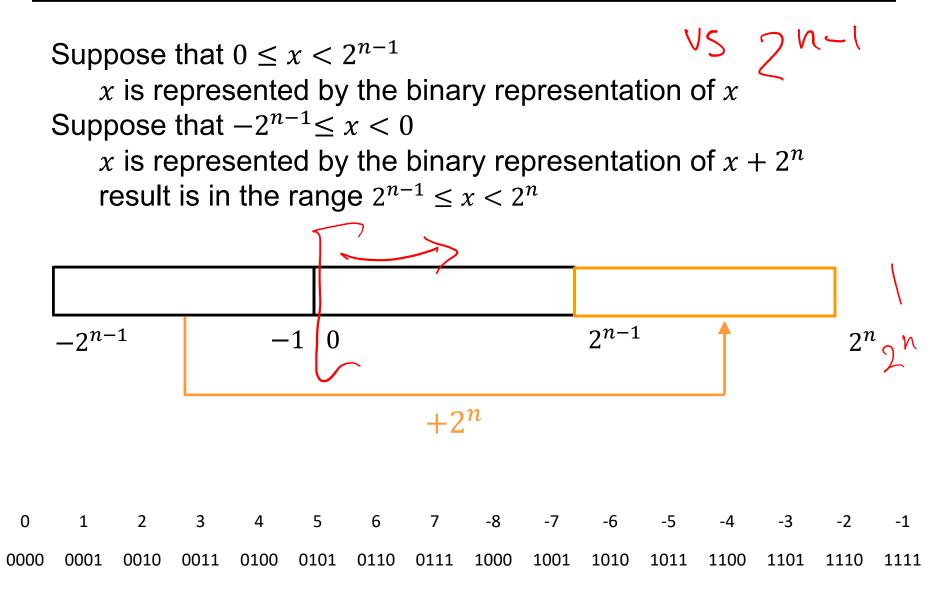
436,401.00 +679.50 (+0.16%)

At close: 4:00PM EDT

Sign-Magnitude Integer Representation

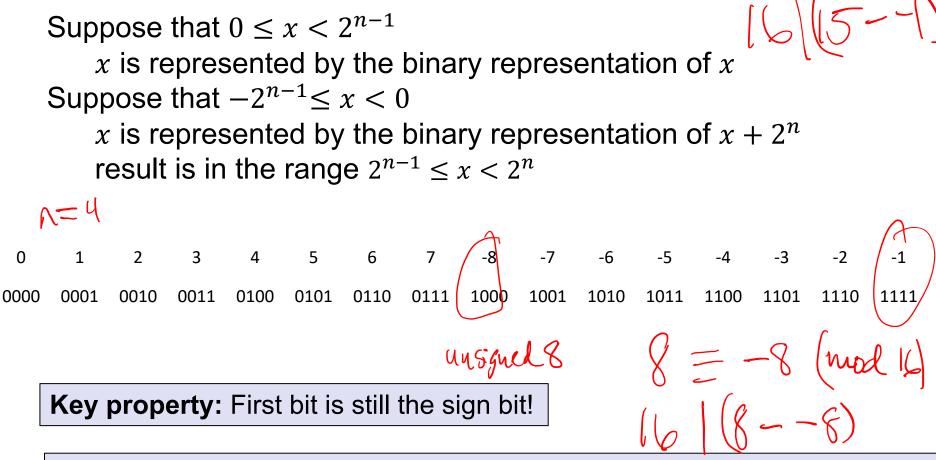
n-bit signed integers Suppose that $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value 99 = 64 + 32 + 2 + 118 = 16 + 2 $|\beta = 000|0000$ For n = 8: 99: 0110 0011 - (B = 10010010 -18: 1001 0010 0000 0000 (- D) 1000 0000 (- D)

Problem: this has both +0 and -0 (annoying)



Suppose that $0 \le x < 2^{n-1}$ x is represented by the binary representation of x Suppose that $-2^{n-1} \le x < 0$ x is represented by the binary representation of $x + 2^n$ result is in the range $2^{n-1} \le x < 2^n$ 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 0 1 -1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 99 = 64 + 32 + 2 + 118 = 16 + 2For n = 8: 99: 0110 0011

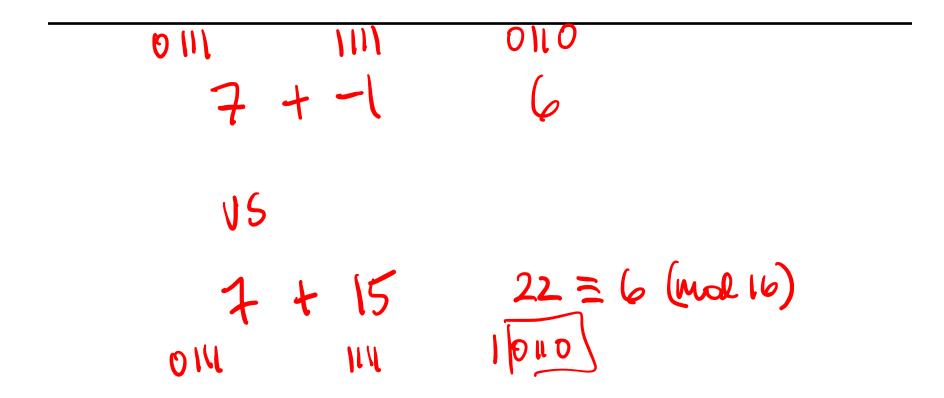
-18: 1110 1110 (-18 + 256 = 238)



Key property: Twos complement representation of any number yis equivalent to $y \pmod{2^n}$ so arithmetic works $\pmod{2^n}$

$$y + 2^n \equiv y \pmod{2^n}$$

$$\varphi | | \varphi$$



- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $-x + 2^n$ - How do we calculate -x from x? - E.g., what happens for "return -x;" in Java?
- To compute this, flip the bits of x then add 1!
 All 1's string is 2ⁿ 1, so
 Flip the bits of x means replace x by 2ⁿ 1 x
 Then add 1 to get -x + 2ⁿ

More Number Theory Primes and GCD

Primality

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

 $p > 1 \land \forall x ((x > 0) \land (x \mid p)) \rightarrow ((x = 1) \lor (x = p)))$

A positive integer that is greater than 1 and is not prime is called *composite*.

 $p > 1 \land \exists x ((x > 0) \land (x \mid p) \land (x \neq 1) \land (x \neq p))$

Every positive integer greater than 1 has a "unique" prime factorization

 $48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 = 3 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ $591 = 3 \cdot 197$ 45,523 = 45,523 $321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137$ $1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803$

- Multiplication
 - Given primes $p_1, p_2, ..., p_k$, calculate their product $p_1p_2 ... p_k$
- Factoring
 - Given an integer n, determine the prime factorization of n

Factor the following 232 digit number [RSA768]:

Famous Algorithmic Problems

- Factoring
 - Given an integer *n*, determine the prime factorization of *n*
- Primality Testing
 - Given an integer n, determine if n is prime

- Factoring is hard
 - (on a classical computer)
- Primality Testing is easy

GCD(a, b):

Largest integer d such that $d \mid a$ and $d \mid b$

- GCD(100, 125) = 25
- GCD(17, 49) = ⁽
- GCD(11, 66) = 1
- GCD(13, 0) =
- GCD(180, 252) = $2^{2} \cdot 3^{2} = 36$ $(2^{2} \cdot 5^{2} \cdot 5) = 2^{2} \cdot 3^{2} \cdot 7$

 $d = \operatorname{GCD}(a,b) \text{ iff } (d \mid a) \land (d \mid b) \land \forall x (((x \mid a) \land (x \mid b)) \rightarrow (x \leq d))$

GCD and Factoring

 $a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$ $b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$

Factoring is hard!

Can we compute GCD(a,b) without factoring?

Let a and b be positive integers. We have $gcd(a,b) = gcd(b, a \mod b)$

Proof:

We will show that the numbers dividing *a* and *b* are the same as those dividing *b* and *a* mod *b*. i.e., *d* | *a* and *d* | *b* iff *d* | *b* and *d* | (*a* mod *b*).

Hence, their set of common divisors are the same, which means that their greatest common divisor is the same.

g(d(a,b) = g(d(b,a))

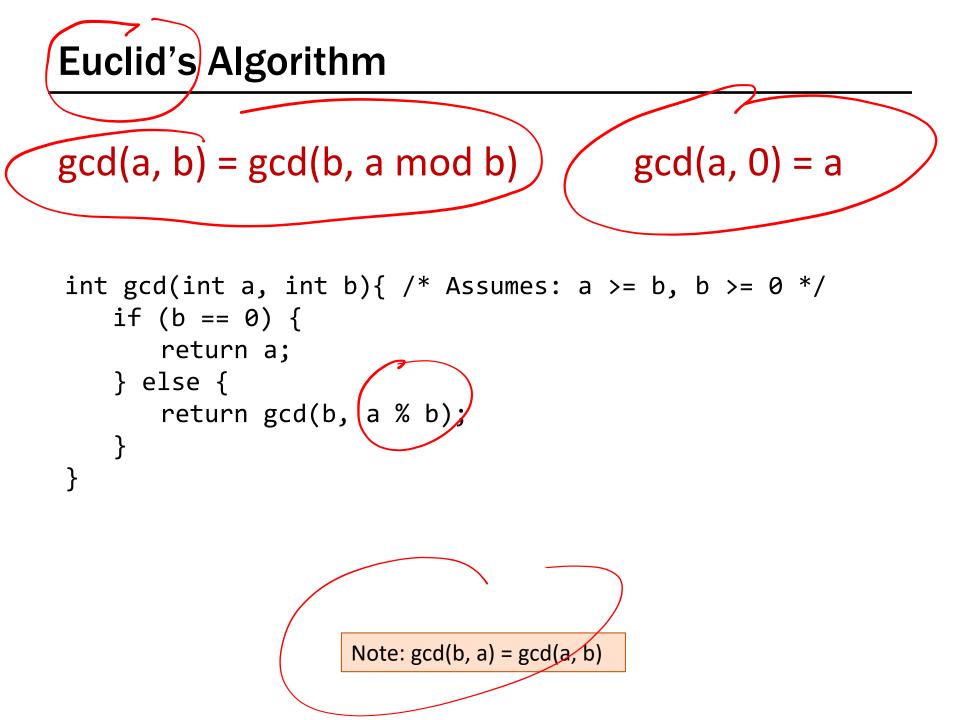
Let *a* and *b* be positive integers. We have $gcd(a,b) = gcd(b) a \mod b$

Proof:

By definition of mod, $a = qb + (a \mod b)$ for some integer $q = a \operatorname{div} b$. (F) Suppose that d|b and $d|(a \mod b)$. Then b = md and $(a \mod b) = nd$ for some integers m and n. Therefore $a = qb + (a \mod b) = qmd + nd = (qm + n)d$. So d|a. Therefore d|a and d|b. (b) d|a. Therefore d|a and d|b. Then a = kd and b = jd for some integers k and j. Therefore $(a \mod b) = a - qb = kd - qjd = (k - qj)d$. So $d|(a \mod b)$ also. Therefore d|b and $d|(a \mod b)$.

Since they have the same common divisors, $gcd(a, b) = gcd(b, a \mod b)$.

Let a be a positive integer. We have gcd(a,0) = a.



Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

gcd(660,126)

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

Equations with recursive calls:

 $gcd(660,126) = gcd(126, 660 \mod 126) \neq gcd(126, 30)$ = $gcd(30, 126 \mod 30) = gcd(30, 6)$ = $gcd(6, 30 \mod 6) = gcd(6, 0)$ = 6

> 660 = 5 * 126 + 30 126 = 4 * 30 + 6 30 = 5 * 6 + 0

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

Equations with recursive calls:

 $gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$ = $gcd(30, 126 \mod 30) = gcd(30, 6)$ = $gcd(6, 30 \mod 6) = gcd(6, 0)$ = 6

Tableau form (which is much easier to work with and will be more useful):

660 = 5 * 126 + 30 126 = 4 * 30 + 630 = 5 * 6 + 0

Each line computes both quotient and remainder of the shifted numbers We already can

- Add, subtract, and, multiply numbers (mod *m*)

What about dividing numbers (mod *m*)?

In ordinary arithmetic, to divide by a we can multiply by $b = a^{-1} = 1/a$, the *multiplicative inverse* of a

- It doesn't always exist
 - if a = 0
 - if the domain is integers and $a \neq 1, -1$

- If it does exist then ab = 1

Multiplicative inverse (mod m)

Let $0 \leq a, b < m$. Then, b is the multiplicative inverse of a (modulo m) iff $ab \equiv 1 \pmod{m}$.

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5 3		1	6	4	2
6	0	6	5	4	3	2	1

							Х	0	1	2	3	4	5	6	7	8	9
	2	3	4	5	6		0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0		1	0	1	2	3	4	5	6	7	8	9
	2	3		5			2	0	2	4	6	8	0	2	4	6	8
			4		6		3	0	3	6	9	2	5	8	1	4	7
	4	6	1	3	5		4	0	4	8	2	6	0	4	8	2	6
	6	2	5	1	4		5	0	5	0	5	0	5	0	5	0	5
	1	5	2	6	3		6	0	6	2	8	4	0	6	2	8	4
	3	1	6	4	2		7	0	7	4	1	8	5	2	9	6	3
	5	4	3	2	1												
	<u> </u>	•		-			8	0	8	6	4	2	0	8	6	4	2
mod 7 3.5=1						9	0	9	8	7	6	5	4	3	2	1	
	ind t							mod 10									

If a and b are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb.hotes $\forall a \forall b ((a > 0 \land b > 0) \rightarrow \exists s \exists t (gcd(a, b) = sa + tb))$

• Can use Euclid's Algorithm to find s, t such that gcd(a, b) = sa + tb

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 1 (Compute GCD(a,b) in tableau form):

Example: a = 35, b = 27

Compute gcd(35, 27):

```
a = q * b + r

35 = 1 * 27 + 8

27 = 3 * 8 + 3

8 = 2 * 3 + 2

3 = 1 * 2 + 1

2 = 2 * 1 + 0
```

Can use Euclid's Algorithm to find s, t such that ullet

gcd(a, b) = sa + tb

* 27

* 8

* 3

* 2

Step 2 (Solve the equations for r):

Example: a = 35, b = 27

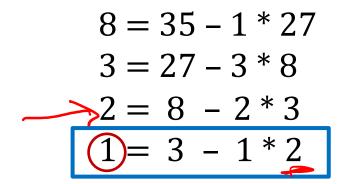
a = q * b + rr = a - q * b
$$35 = 1 * 27 + 8$$
 $8 = 35 - 1 * 2$ $27 = 3 * 8 + 3$ $3 = 27 - 3 * 8$ $8 = 2 * 3 + 2$ $2 = 8 - 2 * 3$ $3 = 1 * 2 + 1$ $1 = 3 - 1 * 2$ $2 = 2 * 1 + 0$ $1 = 3 - 1 * 2$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Example: a = 35, b = 27



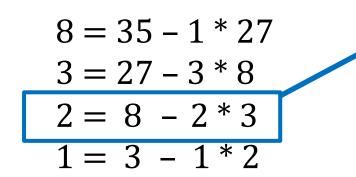
Can use Euclid's Algorithm to find s, t such that gcd(a, b) = sa + tb**Step 3 (Backward Substitute Equations): Example:** a = 35, b = 27 1 = 3 - 1 * 28 = 35 - 1 * 273 = 27 - 3 * 82 = 8 - 2 * 31 = 3 - 1 * 2

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Example: a = 35, b = 27= 3 - 1 * 2 Plug in for 2 = 3 - 1 * (8 - 2 * 3)



• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

3 = 27 - 3 * 8

2 = 8 - 2 * 3

1 = 3 - 1 * 2

Example:
$$a = 35, b = 27$$

 $1 = 3 - 1 * 2$
 $= 3 - 1 * (8 - 2 * 3)$
 $= 3 - 8 + 2 * 3$
 $= (-1) * 8 + 3 * 3$
 $8 = 35 - 1 * 27$
Re-arrange into
 $= (-1) * 8 + 3 * 3$
Re-arrange into

Can use Euclid's Algorithm to find s, t such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

1 = 3 - 1 * 2

Example:
$$a = 35, b = 27$$

 $1 = 3 - 1 * 2$
 $= 3 - 1 * (8 - 2 * 3)$
 $= 3 - 8 + 2 * 3$
 $= (-1) * 8 + 3 * 3$
 $8 = 35 - 1 * 27$ Plug in for 3
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
Plug in for 3

= (-1) * 8 + 3 * (27 - 3 * 8)

Can use Euclid's Algorithm to find s, t such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Example: a = 35, b = 27 1 = 3 - 1 * 2 = 3 - 1 * (8 - 2 * 3) = 3 - 8 + 2 * 3 = (-1) * 8 + 3 * 3 8 = 35 - 1 * 27 3 = 27 - 3 * 8 2 = 8 - 2 * 3 1 = 3 - 1 * 2 = (-1) * 8 + 3 * (27 - 3 * 8) = (-1) * 8 + 3 * 27 + (-9) * 8 = 3 * 27 + (-10) * 8 Re-arrange into 27's and 8's

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Example:
$$a = 35, b = 27$$

 $1 = 3 - 1 * 2$
 $= 3 - 1 * (8 - 2 * 3)$
 $= 3 - 8 + 2 * 3$
 $= (-1) * 8 + 3 * 3$
 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$
 $= (-1) * 8 + 3 * (27 - 3 * 8)$
 $= (-1) * 8 + 3 * (27 - 3 * 8)$
 $= (-1) * 8 + 3 * 27 + (-9) * 8$
 $= 3 * 27 + (-10) * (35 - 1 * 27)$

Can use Euclid's Algorithm to find s, t such that gcd(a,b) = sa + tbStep 3 (Backward Substitute Equations): **Example:** a = 35, b = 271 = 3 - 1 * 2= 3 - 1 * (8 - 2 * 3)= 3 - 8 + 2 * 3= (-1) * 8 + 3 * 3 8 = 35 - 1 * 27=(-1)*8+3*(27-3*8)3 = 27 - 3 * 8= (-1) * 8 + 3 * 27 + (-9) * 82 = 8 - 2 * 3= 3 * 27 + (-10) * 81 = 3 - 1 * 2= 3 * 27 + (-10) * (35 - 1 * 27)Re-arrange into = 3 * 27 + (-10) * 35 + 10 * 27**Optional Check:** (-10) * 35 = -35035's and 27's = (-10) * 35 + 13 * 2713 * 27 = 351

Suppose that gcd(a, m) = 1.

By Bézout's Theorem, there exist integers *s* and *t* such that sa + tm = 1.

Therefore $sa \equiv 1 \pmod{m}$.

The multiplicative inverse *b* of *a* modulo *m* must also satisfy $0 \le b < m$ so we set $b = s \mod m$.

It works since $ba \equiv sa \equiv 1 \pmod{m}$

So... we can compute multiplicative inverses with the extended Euclidean algorithm.