CSE 311: Foundations of Computing

Lecture 10: Modular Arithmetic

Last Class: Divisibility

Definition: "b divides a"

For a, b with $b \neq 0$:

$$b \mid a \leftrightarrow \exists q \ (a = qb)$$

Check Your Understanding. Which of the following are true?

Division Theorem

For a, b with b > 0there exist *unique* integers q, r with $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide *b* into *a*, we get a unique quotient $q = a \operatorname{div} b$ and non-negative remainder $r = a \operatorname{mod} b$

h=2

$(a + b) \mod 7$ $(a \times b) \mod 7$

	+	0	1	2	3	4	5	6
	0	0	1	2	3	4	5	6
	1	1	2	3	4	5	6	0
	2	2	3	4	5	6	0	1
	3	3	4	5	6	0	1	2
	4	4	5	6	0	1	2	3
	5	5	6	0	1	2	3	4
	6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

New notion of "sameness" or "equivalence" that will help us understand modular arithmetic.

This is a predicate (T/F values) on integers a, b, m. It does not produce numbers as output.

There is really a notion of sameness for each m > 0. It may help you to think of $a \equiv b \pmod{m}$ for a fixed m > 0 as an equivalence $a \equiv_m b$. Standard math notation writes the (mod m) on the right to tell you what notion of sameness \equiv means. Definition: "a is congruent to b modulo m"

For
$$a, b, m$$
 with $m > 0$
 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

A chain of equivalences is written

$$a \equiv b \equiv c \equiv d \pmod{m}$$

This means $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ and $c \equiv d \pmod{m}$

Definition: "a is congruent to b modulo m" For a, b, m with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$ Check Your Understanding. What do each of these mean? When are they true? x is es $x \equiv 0 \pmod{2}$ This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work. 5 (-1-19) 51 -20 $-1 \equiv 19 \pmod{5}$ This statement is true. 19 - (-1) = 20 which is divisible by 5 7/ (y-2) .: 7/ = y-2 fam some le y=7/k+2 $y \equiv 2 \pmod{7}$ This statement is true for y in { ..., -12, -5, 2, 9, 16, ...}. In other words, all y of the form 2+7k for k an integer.

(\Leftarrow) Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

(\Leftarrow) Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

Then,
$$a - b = (mq + (a \mod m)) - (ms + (b \mod m)) = mq - m(q - m)$$

= $m(q - s) + (a \mod m - b \mod m)$ $\neg m(q - s)$
= $m(q - s)$ since $a \mod m = b \mod m$

Goal: show $a \equiv b \pmod{m}$, i.e., $m \mid (a - b)$.

(\Leftarrow) Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

Then,
$$a - b = (mq + (a \mod m)) - (ms + (b \mod m))$$

= $m(q - s) + (a \mod m - b \mod m)$
= $m(q - s)$ since $a \mod m = b \mod m$

Therefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$.

Goal: show $a \equiv b \pmod{m}$, i.e., $m \mid (a - b)$.

(Halfway there)

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

 (\Rightarrow) Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

 (\Rightarrow) Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Combining these, we have $qm + (a \mod m) = a = b + km$ or equiv., $b = qm - km + (a \mod m) = (q - k)m + (a \mod m)$. By the Division Theorem, we have $b \mod m = a \mod m$.

 (\Rightarrow) Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Combining these, we have $qm + (a \mod m) = a = b + km$ or equiv., $b = qm - km + (a \mod m) = (q - k)m + (a \mod m)$. By the Division Theorem, we have $b \mod m = a \mod m$.

Modular Arithmetic: A Property

Let a, b, m be integers with m >Then, $a \equiv b \pmod{m}$ if and only (\Rightarrow) Suppose that $a \equiv b \pmod{m}$. Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Combining these, we have $qm + (a \mod m) = a = b + km$ or equiv., $b = qm - km + (a \mod m) = (q - k)m + (a \mod m)$. By the Division Theorem, we have $b \mod m = a \mod m$.

- What we have just shown
 - The mod *m* function maps any integer *a* to a remainder $a \mod m \in \{0, 1, ..., m 1\}$.
 - Imagine grouping together all integers that have the same value of the mod m function That is, the same remainder in $\{0, 1, ..., m - 1\}$.
 - The $\equiv \pmod{m}$ predicate compares integers a, b. It is true if and only if the mod m function has the same value on a and on b.

That is, **a** and **b** are in the same group.

Recall: Familiar Properties of "="

- If a = b and b = c, then a = c.
 - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
 - in particular, since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
 - in particular, since c = c is true, we can " $\times c$ " to both sides

These are the facts that allow us to use algebra to solve problems

Modular Arithmetic: Basic Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Modular Arithmetic: Basic Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$.

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then, by the previous property, we have $a \mod m = b \mod m$ and $b \mod m = c \mod m$.

Putting these together, we have $a \mod m = c \mod m$, which says that $a \equiv c \pmod{m}$, by the previous property.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$.

Suppose that that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integers k, j. Adding the equations together gives us (a + c) - (b + d) = m(k + j).

By the definition of congruence, we have $a + c \equiv b + d \pmod{m}$.

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $ac \equiv bd \pmod{m}$. Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. $c \cdot d = \lim_{u \neq u} \int_{u \neq u}^{u \neq u} \int_{u}^{u \neq u} \int_{u \neq u}^{u \neq u} \int_{u \neq$

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $ac \equiv bd \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integer k, j or equivalently, a = km + b and c = jm + d.

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $ac \equiv bd \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integer k, j or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$.

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $ac \equiv bd \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integer k, j or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$. Re-arranging, this becomes ac - bd = m(kjm + kd + bj).

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $ac \equiv bd \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integer k, j or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$. Re-arranging, this becomes ac - bd = m(kjm + kd + bj).

This says $ac \equiv bd \pmod{m}$ by the definition of congruence.

Modular Arithmetic: Properties

If
$$a \equiv b \pmod{m}$$
 and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$
If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then
 $a + c \equiv b + d \pmod{m}$ and
 $ac \equiv bd \pmod{m}$
Corollary: If $a \equiv b \pmod{m}$ then

 $a + c \equiv b + c \pmod{m}$ and $a = b \pmod{m}$ and $a = b \pmod{m}$

These allow us to solve problems in modular arithmetic, e.g.

- add/subtract numbers from both sides of equations
- multiply numbers on both sides of equations.
- use chains of equivalences

Example: Proof by Cases with mod Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

Let's start by looking at small examples:

 $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ $2^2 = 4 \equiv 0 \pmod{4}$ $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$

It looks as though we have:

If n is even then $n^2 \equiv 0 \pmod{4}$ If n is odd then $n^2 \equiv 1 \pmod{4}$

Example: Proof by Cases with mod

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

Case 1 (*n* is even): Suppose *n* is even. Then, n = 2k for some integer *k*. So, $n^2 = (2k)^2 = 4k^2 = 4k^2 + 0$. So, by the definition of congruence, we have $n^2 \equiv 0 \pmod{4}$.

Example: Proof by Cases with mod

