CSE 311: Foundations of Computing

Lecture 10: Modular Arithmetic

Last Class: Divisibility

Definition: " b divides a "

For a, b with $b \neq 0$:

$$
b \mid a) \leftrightarrow \exists q(a=q b)
$$

Check Your Understanding. Which of the following are true?

5|1
5 | 1 iff $1=5 k$

1 | 5 iff $5=1 k$

25|5
25 | 5 iff $5=25 k$
$5 \mid 25$
$5 \mid 25$ iff $25=5 k$

5 | 0 iff $0=5 k$
$0 \mid 5$
2 | 3
$0 \mid 5$ iff $5=0 k \quad 2 \mid 3$ iff $3=2 k$

Last class: Division Theorem

Division Theorem

For a, b with $b>0$
there exist unique integers q, r with $0 \leq r<b$ such that $a=q b+r$.

To put it another way, if we divide b into a, we get a unique quotient $q=a \operatorname{div} b$ and non-negative remainder $r=a \bmod b$

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$. Not quite the same as $a \% d$.

Last class: div and $\bmod x \equiv 3(\bmod$ 偶 $)$

$$
x=7 \cdot(x \operatorname{div} 7)+(x \bmod 7)
$$

Arithmetic, mod 7

$(19+1)$ and 7
$(0+1)$ mod 7
$(a+b) \bmod 7$
$(a \times b) \bmod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

New notion of "sameness" or "equivalence" that will help us understand modular arithmetic.
This is a predicate (T/F values) on integers a, b, m. It dpes not produce numbers as output.

There is really a notion of sameness for each $m>0$. It may help you to think of $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ for a fixed $m>0$ as an equivalence $\boldsymbol{a} \equiv_{m} \boldsymbol{b}$.
Standard math notation writes the $(\bmod m)$ on the right to tell you what notion of sameness \equiv means.

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For a, b, m with $m>0$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

A chain of equivalences is written

$$
a \equiv b \equiv c \equiv d(\bmod m)
$$

This means $a \equiv b(\bmod m)$

$$
\text { and } b \equiv c(\bmod m)
$$

$$
\text { and } c \equiv d(\bmod m)
$$

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For a, b, m with $n>0$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv 0(\bmod 2)$
This statement is the same as saying " x is even"; so, any x that is even (fincludidshegative even numbers) will work.

$$
-1 \equiv 19(\bmod 5)-1-19=-20
$$

T trite statement is true. 19-(-1) = 20 which is divisible By $y \equiv 2(\bmod 7)$

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
(\Leftarrow) Suppose that $a \bmod m=b \bmod m$.

By the division theorem, $a=m q+(a \bmod m)$ and

$$
b=m s+(b \bmod m) \text { for some integers } q, s
$$

Goal: show $a \equiv b(\bmod m)$, i.e., $m \mid(a-b)$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
(\Leftarrow) Suppose that $a \bmod m=b \bmod m$.

By the division theorem, $a=m q+(a \bmod m)$ and

$$
b=m s+(b \bmod m) \text { for some integers } q, s
$$

$$
\text { Then, } \begin{aligned}
a-b & =(m q+(a \bmod m))-(m s+(b \bmod m)) \\
& =m(q-s)+(a \bmod m-b \bmod m) \\
& =m(q-s) \text { since } a \bmod m=b \bmod m
\end{aligned}
$$

Goal: show $a \equiv b(\bmod m)$, i.e., $m \mid(a-b)$.

Modular Arithmetic: A Property

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
(\Leftarrow) Suppose that $a \bmod m=b \bmod m$.
By the division theorem, $a=m q+(a \bmod m)$ and

$$
b=m s+(b \bmod m) \text { for some integers } q, s
$$

$$
\text { Then, } \begin{aligned}
a-b & =(m q+(a \bmod m))-(m s+(b \bmod m)) \\
& =m(q-s)+(a \bmod m-b \bmod m) \\
& =m(q-s) \text { since } a \bmod m=b \bmod m
\end{aligned}
$$

Therefore, $m \mid(a-b)$ and so $a \equiv b(\bmod m)$.
Goal: show $a \equiv b(\bmod m)$, i.e., $m \mid(a-b)$.
(Halfway there)

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
(\Rightarrow) Suppose that $a \equiv b(\bmod m)$.
Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.

Goal: show $a \bmod m \equiv b \bmod m$

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
(\Rightarrow) Suppose that $a \equiv b(\bmod m)$.

Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.

By the Division Theorem, we have $a=q m+(a \bmod m)$, where $0 \leq(a \bmod m)<m$.

Goal: show $a \bmod m \equiv b \bmod m$

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.

Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
(\Rightarrow) Suppose that $a \equiv b(\bmod m)$.

Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+\mathrm{km}$.

By the Division Theorem, we have $a=q m+(a \bmod m)$, where $0 \leq(a \bmod m)<m$.

Combining these, we have $q m+(a \bmod m)=a=b+k m$ or equiv., $b=q m-k m+(a \bmod m)=(q-k) m+(a \bmod m)$.
[By the Division Theorem, we have $b \bmod m=a \bmod m$.
Goal: show $a \bmod m \equiv b \bmod m$

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.

Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
(\Rightarrow) Suppose that $a \equiv b(\bmod m)$.

Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.

By the Division Theorem, we have $a=q m+(a \bmod m)$, where $0 \leq(a \bmod m)<m$.

Combining these, we have $q m+(a \bmod m)=a=b+k m$ or equiv., $b=q m-k m+(a \bmod m)=(q-k) m+(a \bmod m)$. By the Division Theorem, we have $b \bmod m=a \bmod m$.

Goal: show $a \bmod m \equiv b \bmod m$

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>$
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only
\Leftrightarrow) Suppose that $a \equiv b(\bmod m)$. without discussing "divides" every time.

Then $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ some integer k by definition of divides.
Therefore, $a=b+k m$.
By the Division Theorem, we have $a=q m+(a \bmod m)$, where $0 \leq(a \bmod m)<m$.

Combining these, we have $q m+(a \bmod m)=a=b+k m$ or equiv., $b=q m-k m+(a \bmod m)=(q-k) m+(a \bmod m)$. By the Division Theorem, we have $b \bmod m=a \bmod m$.

The $\bmod \boldsymbol{m}$ function vs the $\equiv(\bmod \boldsymbol{m})$ predicate

- What we have just shown
- The mod m function maps any integer a to a remainder $\boldsymbol{a} \bmod \boldsymbol{m} \in\{0,1, \ldots, \boldsymbol{m}-1\}$.
- Imagine grouping together all integers that have the same value of the mod m function
That is, the same remainder in $\{0,1, . ., m-1\}$.
- The $\equiv(\bmod \boldsymbol{m})$ predicate compares integers a, b. It is true if and only if the mod m function has the same value on a and on b.
That is, a and b are in the same group.

Recall: Familiar Properties of "="

- If $a=b$ and $b=c$, then $a=c$.
- ie., if $a=b=c$, then $a=c$
- If $a=b$ and $c=d$, then $a+c=b+d$.

- in particular, since $c=c$ is true, we can " $+c$ " to both sides
- If $a=b$ and $c=d$, then $a c=b d$.
- in particular, since $c=c$ is true, we can " $\times c$ " to both sides

These are the facts that allow us to use algebra to solve problems

Modular Arithmetic: Basic Property

Let m be a positive integer.
If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ and $\boldsymbol{b} \equiv \boldsymbol{c}(\bmod m)$, then $\boldsymbol{a} \equiv \boldsymbol{c}(\bmod m)$.

Modular Arithmetic: Basic Property

Let m be a positive integer.
If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ and $\boldsymbol{b} \equiv \boldsymbol{c}(\bmod m)$, then $\boldsymbol{a} \equiv \boldsymbol{c}(\bmod m)$.

Suppose that $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$.

Modular Arithmetic: Basic Property

Let m be a positive integer.
If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ and $\boldsymbol{b} \equiv \boldsymbol{c}(\bmod m)$, then $\boldsymbol{a} \equiv \boldsymbol{c}(\bmod m)$.

Suppose that $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$.
Then, by the previous property, we have $a \bmod m=b \bmod m$ and $b \bmod m=c \bmod m$.

Putting these together, we have $a \bmod m=c \bmod m$, which says that $a \equiv c(\bmod m)$, by the previous property.

Modular Arithmetic: Addition Property

Let m be a positive integer.
If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod m)$ then $\boldsymbol{a}+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{d}(\bmod m)$.

Modular Arithmetic: Addition Property

Let m be a positive integer.
If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod m)$ then $\boldsymbol{a}+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{d}(\bmod m)$.

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$.

Modular Arithmetic: Addition Property

Let m be a positive integer.
If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod m)$ then $(\boldsymbol{a}+\boldsymbol{c}=\boldsymbol{b}+\boldsymbol{d}(\bmod \tilde{n})$.

Suppose that that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some integers k, j.

Adding the equations together gives us

$$
\begin{aligned}
& (a-b)+(c-d) \\
& =k m+j m
\end{aligned}
$$

By the definition of congruence, we have $a+c \equiv b+d(\bmod m)$.

$$
m((a+d)-(b+d)
$$

Modular Arithmetic: Multiplication Property

```
Let \(m\) be a positive integer.
If \(\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)\) and \(\boldsymbol{c} \equiv \boldsymbol{d}(\bmod m)\) then \(\boldsymbol{a} \boldsymbol{c} \equiv \boldsymbol{b} \boldsymbol{d}(\bmod m)\).
```

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$.

Modular Arithmetic: Multiplication Property

```
Let m}\mathrm{ be a positive integer.
If }\boldsymbol{a}\equiv\boldsymbol{b}(\operatorname{mod}m)\mathrm{ and }\boldsymbol{c}\equiv\boldsymbol{d}(\operatorname{mod}m
then \boldsymbol{a}\equiv\equiv\boldsymbol{b}\boldsymbol{d}(\operatorname{mod}m).
```

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some integer k, j or equivalently, $a=k m+b$ and $c=j m+d$.

Modular Arithmetic: Multiplication Property

Let m be a positive integer.
If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod m)$ then $\boldsymbol{a c} \equiv \boldsymbol{b} \boldsymbol{d}(\bmod m)$.

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some integer k, j or equivalently, $a=k m+b$ and $c=j m+d$.

Multiplying both together gives us $a c=(k m+b)(j m+d)=$ $k j m^{2}+k m d+b j m+b d$.

Modular Arithmetic: Multiplication Property

```
Let m}\mathrm{ be a positive integer.
If }\boldsymbol{a}\equiv\boldsymbol{b}(\operatorname{mod}m)\mathrm{ and }\boldsymbol{c}\equiv\boldsymbol{d}(\operatorname{mod}m
then \boldsymbol{ac}\equiv\boldsymbol{b}\boldsymbol{d}(\operatorname{mod}m).
```

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some integer k, j or equivalently, $a=k m+b$ and $c=j m+d$.

Multiplying both together gives us $a c=(k m+b)(j m+d)=$ $k j m^{2}+k m d+b j m+b d$. Re-arranging, this becomes $a c-b d=m(k j m+k d+b j)$.

Modular Arithmetic: Multiplication Property

```
Let m}\mathrm{ be a positive integer.
If \boldsymbol{a}\equiv\boldsymbol{b}(\operatorname{mod}m)\mathrm{ and }\boldsymbol{c}\equiv\boldsymbol{d}(\operatorname{mod}m)
then ac \equiv\boldsymbol{b}\boldsymbol{d}(\operatorname{mod}m).
```

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some integer k, j or equivalently, $a=k m+b$ and $c=j m+d$.

Multiplying both together gives us $a c=(k m+b)(j m+d)=$ $k j m^{2}+k m d+b j m+b d$. Re-arranging, this becomes $a c-b d=m(k j m+k d+b j)$.

This says $a c \equiv b d(\bmod m)$ by the definition of congruence.

Modular Arithmetic: Properties

$$
\text { If } \boldsymbol{a} \equiv \boldsymbol{b}(\bmod m) \text { and } \boldsymbol{b} \equiv \boldsymbol{c}(\bmod m) \text { then } \boldsymbol{a} \equiv \boldsymbol{c}(\bmod m)
$$

$$
\begin{aligned}
& \text { If } \boldsymbol{a} \equiv \boldsymbol{b}(\bmod m) \text { and } \boldsymbol{c} \equiv \boldsymbol{d}(\bmod m) \text { then } \\
& \qquad \begin{array}{c}
\boldsymbol{a}+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{d}(\bmod m) \text { and } \\
\boldsymbol{a} \boldsymbol{c} \equiv \boldsymbol{b} \boldsymbol{d}(\bmod m)
\end{array}
\end{aligned}
$$

Corollary: If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m)$ then

$$
\begin{aligned}
\boldsymbol{a}+\boldsymbol{c} & \equiv \boldsymbol{b}+\boldsymbol{c}(\bmod m) \text { and } \\
\boldsymbol{a} \boldsymbol{c} & \equiv \boldsymbol{b} \boldsymbol{c}(\bmod m)
\end{aligned}
$$

These allow us to solve problems in modular arithmetic, e.g.

- add/subtract numbers from both sides of equations
- multiply numbers on both sides of equations.
- use chains of equivalences

$$
\begin{aligned}
x+1 & =5 \rightarrow x=4 \\
x+1 & \equiv 5(\bmod 7) \\
x & \equiv 4(\bmod 7)
\end{aligned}
$$

Example: Proof by Cases with mod

Let \boldsymbol{n} be an integer. Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or

$$
\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4) .
$$

Let's start by looking at small examples:

$$
\begin{aligned}
& \mathbf{0}^{\mathbf{2}}=\mathbf{0} \equiv \mathbf{0}(\bmod 4) \\
& \mathbf{1}^{\mathbf{2}}=\mathbf{1} \equiv \mathbf{1}(\bmod 4) \\
& \mathbf{2}^{\mathbf{2}}=\mathbf{4} \equiv \mathbf{0}(\bmod 4) \\
& \mathbf{3}^{\mathbf{2}}=\mathbf{9} \equiv \mathbf{1}(\bmod 4) \\
& \mathbf{4}^{\mathbf{2}}=\mathbf{1 6} \equiv \mathbf{0}(\bmod 4) \\
& 5^{2}=25 \equiv 1(\bmod 4)
\end{aligned}
$$

It looks as though we have:
If \boldsymbol{n} is even then $\boldsymbol{n}^{\mathbf{2}} \equiv \mathbf{0}(\bmod 4)$
If \boldsymbol{n} is odd then $\boldsymbol{n}^{\mathbf{2}} \equiv \mathbf{1}(\bmod 4)$

Example: Proof by Cases with mod

Let \boldsymbol{n} be an integer. Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or

$$
\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)
$$

Case 1 (n is even):
Suppose n is even.
Then, $n=2 k$ for some integer k.
So, $n^{2}=(2 k)^{2}=4 k^{2}=4 k^{2}+0$.
So, by the definition of congruence, we have $n^{2} \equiv 0(\bmod 4)$.

$$
4 \mid n^{2}-0 \quad 4\left(n^{2}\right.
$$

Example: Proof by Cases with mod

Let \boldsymbol{n} be an integer. Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or

$$
\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4) .
$$

Case 1 (n is even): Done.
Case 2 (n is odd):
Suppose n is odd.
Then, $n=2 k+1$ for some integer k.

$$
\text { So, } \begin{aligned}
& n^{2}=(2 k+1)^{2} \\
& =4 k^{2}+4 k+1 \\
& =4\left(k^{2}+k\right)+1 .
\end{aligned}
$$

So, by definition of congruence, we have $n^{2} \equiv 1(\bmod 4)$.

Result follows by proof by cases since n is either even or odd

