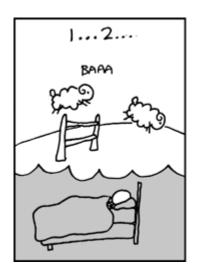
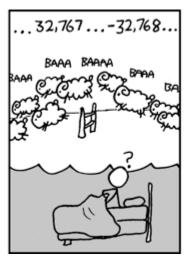
CSE 311: Foundations of Computing

Lecture 10: Modular Arithmetic





Last Class: Divisibility

Definition: "b divides a"

For
$$a, b$$
 with $b \neq 0$:
 $b \mid a \leftrightarrow \exists q \ (a = qb)$

Check Your Understanding. Which of the following are true?

$$5 \mid 0 \text{ iff } 0 = 5k$$

$$5 \mid 0 \text{ iff } 0 = 5k$$
 $3 \mid 2 \text{ iff } 2 = 3k$

$$0 \mid 5 \text{ iff } 5 = 0 \text{k}$$
 $2 \mid 3 \text{ iff } 3 = 2 \text{k}$

Domain of Discourse Integers

Division Theorem

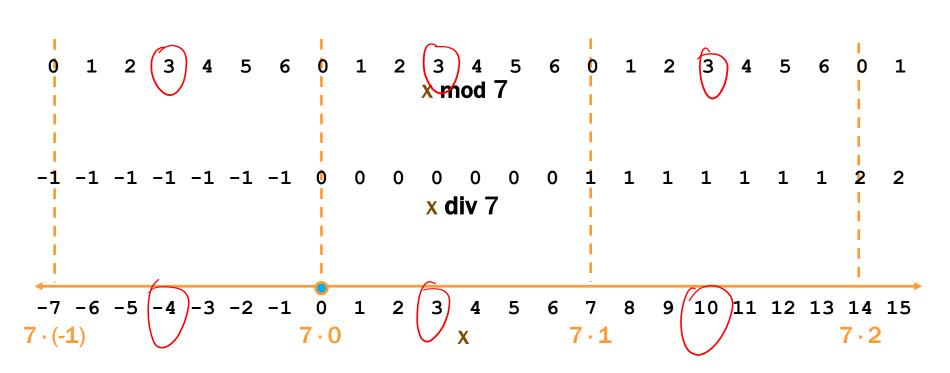
For a, b with b > 0there exist *unique* integers q, r with $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide b into a, we get a unique quotient $q = a \operatorname{div} b$ and non-negative remainder $r = a \operatorname{mod} b$

Note: $r \ge 0$ even if a < 0. Not quite the same as $\mathbf{a} % \mathbf{d}$.

Last class: div and mod $\chi = 3 \pmod{M}$

$$x = 7 \cdot (x \text{ div } 7) + (x \text{ mod } 7)$$



Arithmetic, mod 7

$$(a + b) \mod 7$$

 $(a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	<u>ල</u>	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	(5)

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Definition: "a is congruent to b modulo m"

For a, b, m with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

New notion of "sameness" or "equivalence" that will help us understand modular arithmetic.

This is a predicate (T/F values) on integers a,b,m. It does not produce numbers as output.

There is really a notion of sameness for each m > 0. It may help you to think of $a \equiv b \pmod{m}$ for a fixed m > 0 as an equivalence $a \equiv_m b$. Standard math notation writes the \pmod{m} on the right to tell you what notion of sameness \equiv means.

Integers

Definition: "a is congruent to b modulo m"

For
$$a, b, m$$
 with $m > 0$
 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

A chain of equivalences is written

$$a \equiv b \equiv c \equiv d \pmod{m}$$

This means
$$a \equiv b \pmod{m}$$

and $b \equiv c \pmod{m}$
and $c \equiv d \pmod{m}$

Integers

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For
$$a, b, m$$
 with $m > 0$
 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

$$x \equiv 0 \pmod{2}$$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

$$-1 \equiv 19 \pmod{5}$$

This statement is true. 19 - (-1) = 20 which is divisible by 5

$$y \equiv 2 \pmod{7}$$

This statement is true for y in { ..., -12, -5, 2, 9, 16, ...} In other words, all y of the form 2+7k for k an integer!

Let a, b, m be integers with m > 0.

Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

 (\Leftarrow) Suppose that $a \mod m = b \mod m$.

```
By the division theorem, a = mq + (a \mod m) and b = ms + (b \mod m) for some integers q,s.
```

Goal: show $a \equiv b \pmod{m}$, i.e., $m \mid (a - b)$.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

(\Leftarrow) Suppose that $a \mod m = b \mod m$. \frown

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

```
Then, a - b = (mq + (a \mod m)) - (ms + (b \mod m))
= m(q - s) + (a \mod m - b \mod m)
= m(q - s) since a \mod m = b \mod m
```

Goal: show $a \equiv b \pmod{m}$, i.e., $m \mid (a - b)$.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

 (\Leftarrow) Suppose that $a \mod m = b \mod m$.

```
By the division theorem, a = mq + (a \mod m) and b = ms + (b \mod m) for some integers q,s.
```

```
Then, a - b = (mq + (a \mod m)) - (ms + (b \mod m))
= m(q - s) + (a \mod m - b \mod m)
= m(q - s) since a \mod m = b \mod m
```

Therefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$.

Goal: show $a \equiv b \pmod{m}$, i.e., $m \mid (a - b)$. (Halfway there)

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

 (\Rightarrow) Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a-b)$ by definition of congruence. So, a-b=km for some integer k by definition of divides. Therefore, a=b+km.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

 (\Rightarrow) Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

 (\Rightarrow) Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Combining these, we have $qm + (a \mod m) = a = b + km$ or equiv., $b = qm - km + (a \mod m) = (q - k)m + (a \mod m)$. By the Division Theorem, we have $b \mod m = a \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

 (\Rightarrow) Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Combining these, we have $qm + (a \mod m) = a = b + km$ or equiv., $b = qm - km + (a \mod m) = (q - k)m + (a \mod m)$. By the Division Theorem, we have $b \mod m = a \mod m$.

Let a, b, m be integers with m > In future, we will usually go Then, $a \equiv b \pmod{m}$ if and only directly between these

(⇒) Suppose that $a \equiv b \pmod{m}$.

In future, we will usually go directly between these without discussing "divides" every time.

Then $m \mid (a - b)$ by definition of congruence.

So, a - b = km for some integer k by definition of divides.

Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Combining these, we have $qm + (a \mod m) = a = b + km$ or equiv., $b = qm - km + (a \mod m) = (q - k)m + (a \mod m)$. By the Division Theorem, we have $b \mod m = a \mod m$.

The mod m function vs the $\equiv (mod m)$ predicate

- What we have just shown
 - The $\operatorname{mod} m$ function maps any integer a to a remainder $a \operatorname{mod} m \in \{0,1,...,m-1\}$.
 - Imagine grouping together all integers that have the same value of the $mod\ m$ function That is, the same remainder in $\{0,1,...,m-1\}$.
 - The $\equiv \pmod{m}$ predicate compares integers a, b. It is true if and only if the mod m function has the same value on a and on b.

That is, \boldsymbol{a} and \boldsymbol{b} are in the same group.

Recall: Familiar Properties of "="

- If a=b and b=c, then a=c.

 i.e., if a=b=c, then a=c

- If a = b and c = d, then a + c = b + d.
 - in particular, since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
 - in particular, since c=c is true, we can " $\times c$ " to both sides

These are the facts that allow us to use algebra to solve problems

```
Let m be a positive integer.

If a \equiv b \pmod{m} and b \equiv c \pmod{m},

then a \equiv c \pmod{m}.
```

```
Let m be a positive integer.

If a \equiv b \pmod{m} and b \equiv c \pmod{m},

then a \equiv c \pmod{m}.
```

Suppose that $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$.

```
Let m be a positive integer.

If a \equiv b \pmod{m} and b \equiv c \pmod{m},

then a \equiv c \pmod{m}.
```

Suppose that $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then, by the previous property, we have $a \mod m = b \mod m$ and $b \mod m = c \mod m$.

Putting these together, we have $a \mod m = c \mod m$, which says that $a \equiv c \pmod m$, by the previous property.

Modular Arithmetic: Addition Property

```
Let m be a positive integer.

If a \equiv b \pmod{m} and c \equiv d \pmod{m}

then a + c \equiv b + d \pmod{m}.
```

Modular Arithmetic: Addition Property

```
Let m be a positive integer.

If a \equiv b \pmod{m} and c \equiv d \pmod{m}

then a + c \equiv b + d \pmod{m}.
```

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$.

Modular Arithmetic: Addition Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$.

Suppose that that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integers k, j.

Adding the equations together gives us (a + c) - (b + d) = m(k + j).

$$(a-b)+(c-d)$$
= $km+jm$

By the definition of congruence, we have $a + c \equiv b + d \pmod{m}$.

```
Let m be a positive integer.

If a \equiv b \pmod{m} and c \equiv d \pmod{m}

then ac \equiv bd \pmod{m}.
```

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$.

```
Let m be a positive integer.

If a \equiv b \pmod{m} and c \equiv d \pmod{m}

then ac \equiv bd \pmod{m}.
```

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integer k, j or equivalently, a = km + b and c = jm + d.

```
Let m be a positive integer. If a \equiv b \pmod{m} and c \equiv d \pmod{m} then ac \equiv bd \pmod{m}. \mathcal{M}
```

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integer k, j or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$.

```
Let m be a positive integer.

If a \equiv b \pmod{m} and c \equiv d \pmod{m}

then ac \equiv bd \pmod{m}.
```

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integer k, j or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$. Re-arranging, this becomes ac - bd = m(kjm + kd + bj).

```
Let m be a positive integer.

If a \equiv b \pmod{m} and c \equiv d \pmod{m}

then ac \equiv bd \pmod{m}.
```

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some integer k, j or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$. Re-arranging, this becomes ac - bd = m(kjm + kd + bj).

This says $ac \equiv bd \pmod{m}$ by the definition of congruence.

Modular Arithmetic: Properties

If
$$a \equiv b \pmod{m}$$
 and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$

If
$$a \equiv b \pmod{m}$$
 and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Corollary:

If
$$a \equiv b \pmod{m}$$
 then
$$a + c \equiv b + c \pmod{m} \text{ and}$$

$$ac \equiv bc \pmod{m}$$

These allow us to solve problems in modular arithmetic, e.g.

- add/subtract numbers from both sides of equations
- multiply numbers on both sides of equations.
- use chains of equivalences

$$X+1=5 \pmod{7}$$

$$X \equiv 4 \pmod{7}$$

Example: Proof by Cases with mod

```
Let n be an integer. Prove that n^2 \equiv 0 \pmod{4} or
                                      n^2 \equiv 1 \pmod{4}.
```

Let's start by looking at small examples:

of a start by looking at small examples:
$$0^2 = 0 \equiv 0 \pmod{4}$$

$$1^2 = 1 \equiv 1 \pmod{4}$$

$$2^2 = 4 \equiv 0 \pmod{4}$$

$$3^2 = 9 \equiv 1 \pmod{4}$$

$$4^2 = 16 \equiv 0 \pmod{4}$$

$$5^2 = 16 \equiv 0 \pmod{4}$$
It looks as though we have:
If n is even then $n^2 \equiv 0 \pmod{4}$
If n is odd then $n^2 \equiv 1 \pmod{4}$

Example: Proof by Cases with mod

```
Let n be an integer. Prove that n^2 \equiv 0 \pmod{4} or n^2 \equiv 1 \pmod{4}.
```

Case 1 (n is even): Suppose n is even. Then, n=2k for some integer k. So, $n^2=(2k)^2=4k^2=4k^2+0$. So, by the definition of congruence, we have $n^2\equiv 0\pmod 4$.

Example: Proof by Cases with mod

```
Let n be an integer. Prove that n^2 \equiv 0 \pmod{4} or n^2 \equiv 1 \pmod{4}.
```

```
Case 1 (n is even): Done.

Case 2 (n is odd):

Suppose n is odd.

Then, n = 2k + 1 for some integer k.

So, n^2 = (2k + 1)^2

= 4k^2 + 4k + 1

= 4(k^2 + k) + 1.

So, by definition of congruence, we have n^2 \equiv 1 \pmod{4}.
```

Result follows by proof by cases since n is either even or odd