
CSE 311: Foundations of Computing

Lecture 9:  English Proofs, Strategies & Number Theory



Last class: Inference Rules for Quantifiers

* in the domain of P. No other 

name in P depends on a. 
** c is a NEW name.

List all dependencies for c.

∀x P(x)        
∴ P(a)  (for any a)

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

Intro ∀
∃x P(x)

∴ P(c) for some special** c
Elim ∃

dependencies: 

other named arbitrary constants in ∃x P(x)



Last class: Formal & English Proofs: Even and Odd

Prove “The sum of two odd numbers is even.”

1. Let x be an arbitrary integer

2. Let y be an arbitrary integer

3.1   Odd(x) ∧ Odd(y) Assumption

3.2   Odd(x)  Elim ∧: 3.1

3.3   Odd(y) Elim ∧: 3.1

3.4   ∃z (x = 2z+1) Def of Odd: 3.2

3.5   x = 2a+1 Elim ∃: 3.4: a depend x

3.6   ∃z (y = 2z+1) Def of Odd: 3.3

3.7   y = 2b+1 Elim ∃: 3.6: b depend y

3.8   x+y = 2(a+b+1) Algebra: 3.5, 3.7

3.9   ∃z (x+y = 2z) Intro ∃: 3.8

3.10 Even(x+y) Def of Even

3.   (Odd(x) ∧ Odd(y)) → Even(x+y) DPR

4. ∀y ((Odd(x) ∧ Odd(y)) → Even(x+y)) Intro ∀

5. ∀x∀y ((Odd(x) ∧ Odd(y)) → Even(x+y)) Intro ∀

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for 

some integer a and y = 2b+1 for 

some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the 

sum of two odd integers is even.

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 



Last class: Even and Odd

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for 

some integer a and y = 2b+1 for some integer b. Their 

sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so 

x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd 

integers is even.

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Integers

Domain of Discourse

∀x ∀y ((Odd(x) ∧ Odd(y))→Even(x+y))



Rational Numbers

• A real number x is rational iff there exist integers a

and b with b≠0 such that x=a/b.

Rational(x) := ∃a ∃b (((Integer(a) ∧ Integer(b)) ∧ (x=a/b)) ∧ b≠0)    

Real Numbers

Domain of Discourse



Rationality

Prove: “The product of two rationals is rational.”

Rational(x) := ∃ ∃� (Integer  ∧ Integer � ∧ � = /� ∧ � ≠ 0 )

Predicate Definitions

Real Numbers

Domain of Discourse

Formally, prove ∀x ∀y ((Rational(x) ∧ Rational(y)) → Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary reals.

Suppose x and y are rational.

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the 

product of any two rationals is rational.

Real Numbers

Domain of Discourse

Rational(x) := ∃ ∃� (Integer  ∧ Integer � ∧ � = /� ∧ � ≠ 0 )

Predicate Definitions

∀x ∀y ((Rational(x) ∧ Rational(y)) → Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b≠0, and

y = c/d for some integers c, d, where d≠0. 

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 

Now ac and bd are integers. Also, since b ≠0 and d≠0 

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the 

product of any two rationals is rational.

Real Numbers

Domain of Discourse

Rational(x) := ∃ ∃� (Integer  ∧ Integer � ∧ � = /� ∧ � ≠ 0 )

Predicate Definitions

∀x ∀y ((Rational(x) ∧ Rational(y)) → Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b≠0, and

y = c/d for some integers c, d, where d≠0. 

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 

Now ac and bd are integers. Also, since b ≠0 and d≠0 

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the 

product of any two rationals is rational.

Real Numbers

Domain of Discourse

Rational(x) := ∃ ∃� (Integer  ∧ Integer � ∧ � = /� ∧ � ≠ 0 )

Predicate Definitions

∀x ∀y ((Rational(x) ∧ Rational(y)) → Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b≠0, and

y = c/d for some integers c, d, where d≠0. 

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 

Now ac and bd are integers. Also, since b ≠0 and d≠0 

By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the 

product of any two rationals is rational.

Real Numbers

Domain of Discourse

Rational(x) := ∃ ∃� (Integer  ∧ Integer � ∧ � = /� ∧ � ≠ 0 )

Predicate Definitions

∀x ∀y ((Rational(x) ∧ Rational(y)) → Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b≠0, and

y = c/d for some integers c, d, where d≠0. 

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 

Now ac and bd are integers. Also, since b ≠0 and d≠0 

By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the 

product of any two rationals is rational.

Real Numbers

Domain of Discourse

Rational(x) := ∃ ∃� (Integer  ∧ Integer � ∧ � = /� ∧ � ≠ 0 )

Predicate Definitions

∀x ∀y ((Rational(x) ∧ Rational(y)) → Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b≠0, and

y = c/d for some integers c, d, where d≠0. 

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 

ac and bd are integers. Also, since b ≠0 and d≠0 we 

have bd≠0. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the 

product of any two rationals is rational.

Real Numbers

Domain of Discourse

Rational(x) := ∃ ∃� (Integer  ∧ Integer � ∧ � = /� ∧ � ≠ 0 )

Predicate Definitions

∀x ∀y ((Rational(x) ∧ Rational(y)) → Rational(xy))



English Proofs

• High-level language lets us work more quickly

– should not be necessary to spill out every detail

– examples so far
skipping Intro ∧ and Elim ∧ (and hence, Commutativity and Associativity)

skipping Double Negation

not stating existence claims (immediately apply Elim ∃ to name the object)

not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

– (list will grow over time)

• English proof is correct if the reader is convinced 

they could translate it into a formal proof

– the reader is the “compiler” for English proofs



Proof Strategies



Proof Strategies: Counterexamples

To prove ¬∀x P(x), prove  ∃¬P(x) :

• Equivalent by De Morgan’s Law

• All we need to do that is find an � where �(�) is false

• This example is called a counterexample to �� �(�).

e.g. Prove “Not every prime number is odd”

Proof: 2 is a prime that is not odd — a counterexample 

to the claim that every prime number is odd.

An English proof does not need to cite De Morgan’s law.



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  

¬q → ¬p, which is equivalent to proving p → q.

1.1. �� Assumption

...

1.3. ��

1.    �� � �� Direct Proof

2.     � � � Contrapositive: 1                       



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  

¬q → ¬p, which is equivalent to proving p → q.

1.1. �� Assumption

...

1.3. ��

1.    �� � �� Direct Proof

2.     � � � Contrapositive: 1

We will prove the contrapositive.

Suppose ��.

...

Thus, ��.



Proof by Contradiction:  One way to prove p

If we assume ¬ p and derive F (a contradiction), then 
we have proven p.

1.1.  ¬� Assumption

...

1.3.  �

1.   ¬� � � Direct Proof

2.   ¬¬� � � Law of Implication: 1

3. � � � Double Negation: 2

4.   � Identity: 3



Proof Strategies: Proof by Contradiction

If we assume ¬ p and derive F (a contradiction), then 

we have proven p.

We will argue by contradiction.

Suppose ¬�.

...

This is a contradiction.

Often, we will infer ¬R, where R is a prior fact.
Putting these together, we have R ∧ ¬R ≡ F

1.1.  ¬� Assumption

...

1.3.  �

1.   ¬� � � Direct Proof

2.   ¬¬� � � Law of Implication: 1

3.   � � � Double Negation: 2

4.   � Identity: 3



Even and Odd

Prove: “No integer is both even and odd.”

Formally, prove  ¬ ∃x (Even(x)∧Odd(x)) 

Proof: We will argue by contradiction.

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Rationals

Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”

Formally, prove  ¬ ∃x (Even(x)∧Odd(x)) 

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd. 

This is a contradiction.

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Rationals

Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”

Formally, prove  ¬ ∃x (Even(x)∧Odd(x)) 

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd. 

Then, x=2a for some integer a, and x=2b+1 for some 

integer b. 

This is a contradiction.

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Rationals

Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”

Formally, prove  ¬ ∃x (Even(x)∧Odd(x)) 

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd. 

Then, x=2a for some integer a, and x=2b+1 for some 

integer b. This means 2a=x=2b+1 and hence 2a-2b=1 

and so a-b=½. But a-b is an integer while ½ is not, so 

they cannot be equal. This is a contradiction.

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Rationals

Domain of Discourse

Formally, we’ve shown Integer(½) ∧ ¬Integer(½) ≡ F.



Proof by Cases

On Homework 3, Task 1 you are asked to show:

• Given � →  and ¬� →  derive  

• Given  � ∨ �, � →  and � →  derive  

This will mean that…

If we prove p → r and ¬ p → r then we have proven r.

If we prove p ∨ q, p → r and q → r then we have 

proven r.



Strategies

• Simple proof strategies already do a lot

– counter examples

– proof by contrapositive

– proof by contradiction

– proof by cases

• Later we will cover a specific strategy that applies 

to loops and recursion (mathematical induction)



Applications of Predicate Logic

• Remainder of the course will use predicate logic to 

prove important properties of interesting objects

– start with math objects that are widely used in CS

– eventually more CS-specific objects

• Encode domain knowledge in predicate definitions

• Then apply predicate logic to infer useful results

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse



Number Theory



Number Theory (and applications to computing)

• Branch of Mathematics with direct relevance to 

computing

• Many significant applications

– Cryptography & Security

– Data Structures

– Distributed Systems

• Important toolkit



Modular Arithmetic

• Arithmetic over a finite domain

• Almost all computation is over a finite domain



I’m ALIVE!

public class Test {

final static int SEC_IN_YEAR = 364*24*60*60*100;

public static void main(String args[]) {

System.out.println(

“I will be alive for at least ” +

SEC_IN_YEAR * 101 + “ seconds.”

);

}

}



I’m ALIVE!

public class Test {

final static int SEC_IN_YEAR = 364*24*60*60*100;

public static void main(String args[]) {

System.out.println(

“I will be alive for at least ” +

SEC_IN_YEAR * 101 + “ seconds.”

);

}

}

Prints : “I will be alive for at least -186619904 seconds.”



Divisibility

Check Your Understanding.  Which of the following are true?

5 | 1 25 | 5 5 | 0 3 | 2

1 | 5 5 | 25 0 | 5 2 | 3

For , � with � ≠ 0:

� |  ↔ ∃& ( = &�)

Definition: “b divides a”

Integers

Domain of Discourse



Check Your Understanding.  Which of the following are true?

5 | 1 25 | 5 5 | 0 3 | 2

1 | 5 5 | 25 0 | 5 2 | 3

Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

For , � with � ≠ 0:

� |  ↔ ∃& 	 � &��

Definition: “b divides a”

Integers

Domain of Discourse



For , � with � > 0, we can divide � into .

If � | , then, by definition, we have  = &� for some &.

The number & is called the quotient.

Dividing both sides by �, we can write this as



�
= &

(We want to stick to integers, though, so we’ll write  = &�.)

Recall: Elementary School Division



For , � with � > 0, we can divide � into .

If � ∤ , then we end up with a remainder ) with 0 < ) < �.

Now,

instead of we have 

Multiplying both sides by � gives us   = &� + )

(A bit nicer since it has no fractions.)

Recall: Elementary School Division



�
= &



�
= & +

)

�



For , � with � > 0, we can divide � into .

If � | , then we have  = &� for some &.

If � ∤ , then we have  = &� + ) for some &, ) with 0 < ) < �.

In general, we have  = &� + ) for some &, ) with 0 ≤ ) < �,

where ) = 0 iff � | .

Recall: Elementary School Division



To put it another way, if we divide b into a, we get a 

unique quotient                                                                     

and non-negative remainder

Division Theorem

q = a div b

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a % b.

For , � with � > 0

there exist unique integers q, r with 0 + ) * �

such that  = &� + ).

Division Theorem

r = a mod b

Integers

Domain of Discourse



To put it another way, if we divide b into a, we get a 

unique quotient                                                                     

and non-negative remainder

Division Theorem

q = a div b

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a % b.

r = a mod b

public class Test2 {

public static void main(String args[]) {

int a = -5;

int b = 2;

System.out.println(a % b);

}

}

For , � with � > 0

there exist unique integers q, r with 0 + ) * �

such that  = &� + ).

Division Theorem

Integers

Domain of Discourse



-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2

div and mod

x div 7

x

x mod 7
0  1  2  3  4  5  6  0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1

x = 7 · (x div 7) + (x mod 7)

7 · 1 7 · 27 · 07 · (-1)


