"Yes, yes, I know that, Sidney... everybody knows that!... But look: Four wrongs squared, minus two wrongs to the fourth power, divided by this formula, do make a right."

cozy cs.

\[13 - 1 \]

\[\frac{A, A \rightarrow B}{... B} \]
Last class: Inference Rules for Quantifiers

** c is a NEW name.
List all dependencies for c.

dependencies:
other named arbitrary constants in $\exists x \ P(x)$

```
Intro $\exists$  
\[ P(c) \text{ for some } c \] 
\[ \therefore \exists x \ P(x) \]

Elim $\forall$  
\[ \forall x \ P(x) \] 
\[ \therefore P(a) \text{ (for any } a) \]
```

```
Elim $\exists$  
\[ \exists x \ P(x) \] 
\[ \therefore P(c) \text{ for some special }* \ast \ast \ c \]

Intro $\forall$  
\[ \exists x \ P(x) \] 
\[ \therefore \forall x \ P(x) \]
```


dependencies: other named arbitrary constants in $\exists x \ P(x)$

* in the domain of P. No other name in P depends on a.
Prove “The sum of two odd numbers is even.”

Let \(x \) and \(y \) be arbitrary integers.

Suppose that both are odd.

Then, we have \(x = 2a+1 \) for some integer \(a \) and \(y = 2b+1 \) for some integer \(b \).

Their sum is \(x+y = \ldots = 2(a+b+1) \)

so \(x+y \) is, by definition, even.

Since \(x \) and \(y \) were arbitrary, the sum of two odd integers is even.
Prove “The sum of two odd numbers is even.”

Proof: Let \(x \) and \(y \) be arbitrary integers.

Suppose that both are odd. Then, we have \(x = 2a + 1 \) for some integer \(a \) and \(y = 2b + 1 \) for some integer \(b \). Their sum is \(x + y = (2a + 1) + (2b + 1) = 2a + 2b + 2 = 2(a + b + 1) \), so \(x + y \) is, by definition, even.

Since \(x \) and \(y \) were arbitrary, the sum of any two odd integers is even.

\[
\forall x \forall y ((\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y))
\]
A real number x is *rational* iff there exist integers a and b with $b \neq 0$ such that $x = a/b$.

\[\text{Rational}(x) := \exists a \exists b \left(\left(\text{Integer}(a) \land \text{Integer}(b) \right) \land \left(x = a/b \right) \land b \neq 0 \right) \]
Rationality

Predicate Definitions

\[
\text{Rational}(x) := \exists a \ \exists b \ (\text{Integer}(a) \land \text{Integer}(b) \land (x = a/b) \land (b \neq 0))
\]

Prove: “The product of two rationals is rational.”

Formally, prove \(\forall x \ \forall y ((\text{Rational}(x) \land \text{Rational}(y)) \rightarrow \text{Rational}(xy)) \)

\[
\text{Let } x \text{ and } y \text{ be arbitrary real numbers.}
\]

\[
\text{Assume } x \text{ and } y \text{ are rational.}
\]

\[
\therefore xy \text{ is rational.}
\]

\[
\text{Since } x \text{ and } y \text{ are arbitrary real numbers, this proves the statement.}
\]
Rationality

Prove: “The product of two rationals is rational.”

Proof: Let \(x \) and \(y \) be arbitrary reals.
Suppose \(x \) and \(y \) are rational.

Thus, \(xy \) is rational.

Since \(x \) and \(y \) were arbitrary, we have shown that the product of any two rationals is rational. \(\square \)

\[\forall x \forall y ((\text{Rational}(x) \land \text{Rational}(y)) \rightarrow \text{Rational}(xy)) \]
Rationality

Proof: “The product of two rationals is rational.”

Proof: Let \(x \) and \(y \) be arbitrary rationals.

Thus, \(xy \) is rational.

Since \(x \) and \(y \) were arbitrary, we have shown that the product of any two rationals is rational. ■

\[\forall x \, \forall y \, ((\text{Rational}(x) \land \text{Rational}(y)) \rightarrow \text{Rational}(xy)) \]
Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals. Then, x = a/b for some integers a, b, where b\(\neq 0\), and y = c/d for some integers c, d, where d\(\neq 0\).

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational. ■

\(\forall x \forall y ((\text{Rational}(x) \land \text{Rational}(y)) \rightarrow \text{Rational}(xy))\)
Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals. Then, $x = a/b$ for some integers a, b, where $b \neq 0$, and $y = c/d$ for some integers c, d, where $d \neq 0$.

By definition, then, xy is rational. Since x and y were arbitrary, we have shown that the product of any two rationals is rational. ■

$\forall x \forall y ((\text{Rational}(x) \land \text{Rational}(y)) \rightarrow \text{Rational}(xy))$
Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals. Then, x = a/b for some integers a, b, where b ≠ 0, and y = c/d for some integers c, d, where d ≠ 0. Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).

By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational. □

∀x ∀y ((Rational(x) ∧ Rational(y)) → Rational(xy))
Rationality

Prove: “The product of two rationals is rational.”

Proof: Let \(x \) and \(y \) be arbitrary rationals.
Then, \(x = a/b \) for some integers \(a, b \), where \(b \neq 0 \), and \(y = c/d \) for some integers \(c, d \), where \(d \neq 0 \).
Multiplying, we get that \(xy = (a/b)(c/d) = (ac)/(bd) \).
\(ac \) and \(bd \) are integers. Also, since \(b \neq 0 \) and \(d \neq 0 \) we have \(bd \neq 0 \). By definition, then, \(xy \) is rational.
Since \(x \) and \(y \) were arbitrary, we have shown that the product of any two rationals is rational.

\[\forall x \forall y ((\text{Rational}(x) \land \text{Rational}(y)) \rightarrow \text{Rational}(xy)) \]
English Proofs

- **High-level language lets us work more quickly**
 - should not be necessary to spill out every detail
 - examples so far
 - skipping Intro ∧ and Elim ∧ (and hence, Commutativity and Associativity)
 - skipping Double Negation
 - not stating existence claims (immediately apply Elim ∃ to name the object)
 - not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)
 - (list will grow over time)

- **English proof is correct if the reader is convinced they could translate it into a formal proof**
 - the reader is the “compiler” for English proofs
Proof Strategies
Proof Strategies: Counterexamples

To prove \(\neg \forall x \ P(x) \), prove \(\exists \neg P(x) \):

- Equivalent by De Morgan’s Law
- All we need to do that is find an \(x \) where \(P(x) \) is false
- This example is called a counterexample to \(\forall x \ P(x) \).

e.g. Prove “Not every prime number is odd”

Proof: 2 is a prime that is not odd — a counterexample to the claim that every prime number is odd.

An English proof does not need to cite De Morgan’s law.
Proof Strategies: Proof by Contrapositive

If we assume \(\neg q \) and derive \(\neg p \), then we have proven \(\neg q \rightarrow \neg p \), which is equivalent to proving \(p \rightarrow q \).

1. **Assumption**
 - \(\neg q \)

 ...

1.3. \(\neg p \)

1. \(\neg q \rightarrow \neg p \) Direct Proof
2. \(p \rightarrow q \) Contrapositive: 1
Proof Strategies: Proof by Contrapositive

If we assume \(\neg q \) and derive \(\neg p \), then we have proven \(\neg q \rightarrow \neg p \), which is equivalent to proving \(p \rightarrow q \).

We will prove the contrapositive.

Suppose \(\neg q \).

\[1.1. \quad \neg q \quad \text{Assumption} \]

\[1.3. \quad \neg p \]

Thus, \(\neg p \).

\[1. \quad \neg q \rightarrow \neg p \quad \text{Direct Proof} \]

\[2. \quad p \rightarrow q \quad \text{Contrapositive: 1} \]
Proof by Contradiction: One way to prove p

If we assume $\neg p$ and derive F (a contradiction), then we have proven p.

1. $\neg p$ Assumption

 ...

1.3. F

1. $\neg p \rightarrow F$ Direct Proof
2. $\neg \neg p \lor F$ Law of Implication: 1
3. $p \lor F$ Double Negation: 2
4. p Identity: 3
Proof Strategies: Proof by Contradiction

If we assume \(\neg p \) and derive \(F \) (a contradiction), then we have proven \(p \).

We will argue by contradiction.

Suppose \(\neg p \).

\[1.1. \quad \neg p \quad \text{Assumption} \]

\[1.3. \quad F \]

1. \(\neg p \rightarrow F \) \quad \text{Direct Proof}
2. \(\neg
\neg p \lor F \) \quad \text{Law of Implication: 1}
3. \(p \lor F \) \quad \text{Double Negation: 2}
4. \(p \) \quad \text{Identity: 3}

Often, we will infer \(\neg R \), where \(R \) is a prior fact.
Putting these together, we have \(R \land \neg R \equiv F \).
Prove: “No integer is both even and odd.”

Formally, prove $\neg \exists x \ (\text{Even}(x) \land \text{Odd}(x))$

Proof: We will argue by contradiction.
Prove: “No integer is both even and odd.”

Formally, prove \(\neg \exists x (\text{Even}(x) \land \text{Odd}(x)) \)

Proof: We will argue by contradiction.

Suppose that \(x \) is an integer that is both even and odd.

This is a contradiction. ■
Even and Odd

Prove: “No integer is both even and odd.”

Formally, prove \(\neg \exists x (\text{Even}(x) \land \text{Odd}(x)) \)

Proof: We will argue by contradiction.
Suppose that \(x \) is an integer that is both even and odd. Then, \(x=2a \) for some integer \(a \), and \(x=2b+1 \) for some integer \(b \).

This is a contradiction. ■
Prove: “No integer is both even and odd.”

Formally, prove $\neg \exists x (\text{Even}(x) \land \text{Odd}(x))$

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd. Then, $x=2a$ for some integer a, and $x=2b+1$ for some integer b. This means $2a=x=2b+1$ and hence $2a-2b=1$ and so $a-b=\frac{1}{2}$. But $a-b$ is an integer while $\frac{1}{2}$ is not, so they cannot be equal. This is a contradiction. ■

Formally, we’ve shown $\text{Integer}(\frac{1}{2}) \land \neg \text{Integer}(\frac{1}{2}) \equiv F.$
Proof by Cases

On Homework 3, Task 1 you are asked to show:

- Given \(p \to r \) and \(\neg p \to r \) derive \(r \)
- Given \(p \lor q, p \to r \) and \(q \to r \) derive \(r \)

This will mean that...

If we prove \(p \to r \) and \(\neg p \to r \) then we have proven \(r \).

If we prove \(p \lor q, p \to r \) and \(q \to r \) then we have proven \(r \).
Strategies

• Simple proof strategies already do a lot
 – counter examples
 – proof by contrapositive
 – proof by contradiction
 – proof by cases

• Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)
Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove important properties of interesting objects
 - start with math objects that are widely used in CS
 - eventually more CS-specific objects

- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

<table>
<thead>
<tr>
<th>Domain of Discourse</th>
<th>Predicate Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integers</td>
<td>(\text{Even}(x) \equiv \exists y \ (x = 2 \cdot y))</td>
</tr>
<tr>
<td></td>
<td>(\text{Odd}(x) \equiv \exists y \ (x = 2 \cdot y + 1))</td>
</tr>
</tbody>
</table>
Number Theory
Number Theory (and applications to computing)

• Branch of Mathematics with direct relevance to computing

• Many significant applications
 – Cryptography & Security ✔
 – Data Structures
 – Distributed Systems

• Important toolkit
Modular Arithmetic

- Arithmetic over a finite domain
- Almost all computation is over a finite domain
I'm ALIVE!

```java
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
        System.out.println("I will be alive for at least "+
                         SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```
public class Test {
 final static int SEC_IN_YEAR = 364*24*60*60*100;
 public static void main(String args[]) {
 System.out.println("I will be alive for at least "+
 SEC_IN_YEAR * 101 + " seconds.");
 }
}

---jGRASP exec: java Test
I will be alive for at least -186619904 seconds.

---jGRASP: operation complete.
Divisibility

Definition: “b divides a”

For a, b with $b \neq 0$:

$b \mid a \iff \exists q (a = qb)$

Check Your Understanding. Which of the following are true?

- $5 \mid 1$
- $25 \mid 5$
- $5 \mid 0$
- $3 \mid 2$
- $1 \mid 5$
- $5 \mid 25$
- $0 \mid 5$
- $2 \mid 3$

$\square = \text{True}$

$\times = \text{False}$
Divisibility

Definition: “b divides a”

For a, b with $b \neq 0$:

$b \mid a \iff \exists q (a = qb)$

Check Your Understanding. Which of the following are true?

<table>
<thead>
<tr>
<th>5</th>
<th>1</th>
<th>25</th>
<th>5</th>
<th>5</th>
<th>0</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>1 iff 1 = 5k</td>
<td>25</td>
<td>5 iff 5 = 25k</td>
<td>5</td>
<td>0 iff 0 = 5k</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5 iff 5 = 1k</td>
<td>5</td>
<td>25 iff 25 = 5k</td>
<td>0</td>
<td>5 iff 5 = 0k</td>
<td>2</td>
</tr>
</tbody>
</table>

Domain of Discourse
Integers
For a, b with $b > 0$, we can divide b into a.

If $b | a$, then, by definition, we have $a = qb$ for some q. The number q is called the **quotient**.

Dividing both sides by b, we can write this as

$$\frac{a}{b} = q$$

(We want to stick to integers, though, so we’ll write $a = qb$.)
Recall: Elementary School Division

For a, b with $b > 0$, we can divide b into a.

If $b \nmid a$, then we end up with a remainder r with $0 < r < b$. Now,

\[
\frac{a}{b} = q \quad \text{we have} \quad \frac{a}{b} = q + \frac{r}{b}
\]

Multiplying both sides by b gives us

\[a = qb + r\]

(A bit nicer since it has no fractions.)
Recall: Elementary School Division

For a, b with $b > 0$, we can divide b into a.

If $b \mid a$, then we have $a = q b$ for some q.
If $b \not\mid a$, then we have $a = q b + r$ for some q, r with $0 < r < b$.

In general, we have $a = q b + r$ for some q, r with $0 \leq r < b$, where $r = 0$ iff $b \mid a$.

0 1 2 3
Division Theorem

<table>
<thead>
<tr>
<th>Division Theorem</th>
<th>$-3 = \boxed{-2 \cdot 2 + 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a, b with $b > 0$</td>
<td>there exist unique integers q, r with $0 \leq r < b$ such that $a = qb + r$.</td>
</tr>
</tbody>
</table>

To put it another way, if we divide b into a, we get a unique quotient $q = a \div b$ and non-negative remainder $r = a \mod b$.

Note: $r \geq 0$ even if $a < 0$. Not quite the same as $a \% b$.

Domain of Discourse

Integers
To put it another way, if we divide b into a, we get a unique quotient $q = a \text{ div } b$ and non-negative remainder $r = a \text{ mod } b$.
div and mod

\[x = 7 \cdot (x \text{ div } 7) + (x \text{ mod } 7) \]