
CSE 311: Foundations of Computing

Lecture 9:  English Proofs, Strategies & Number Theory



Last class: Inference Rules for Quantifiers

* in the domain of P. No other 
name in P depends on a. 

** c is a NEW name.
List all dependencies for c.

"x P(x)        
∴ P(a)  (for any a)

“Let a be arbitrary*”...P(a)
∴ "x P(x)

P(c) for some c
∴ $x P(x)

Intro $ Elim "

Intro "$x P(x)
∴ P(c) for some special** c

Elim $

dependencies: 
other named arbitrary constants in $x P(x)



Last class: Formal & English Proofs: Even and Odd

Prove “The sum of two odd numbers is even.”
1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1   Odd(x) ∧	Odd(y) Assumption
3.2   Odd(x)  Elim ∧: 2.1
3.3   Odd(y) Elim ∧: 2.1

3.4   ∃z (x = 2z+1) Def of Odd: 2.2
3.5   x = 2a+1 Elim ∃: 2.4: a depend x
3.6   ∃z (y = 2z+1) Def of Odd: 2.3
3.7   y = 2b+1 Elim ∃: 2.5: b depend y

3.8   x+y = 2(a+b+1) Algebra

3.9 ∃z (x+y = 2z) Intro ∃: 2.4
3.10 Even(x+y) Def of Even

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y) DPR
4. "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "
5. "x"y ((Odd(x) ∧	Odd(y)) ® Even(x+y))  Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for 
some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of two odd integers is even.

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



Last class: Even and Odd

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers.
Suppose that both are odd. Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for some integer b. Their 
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so 
x+y is, by definition, even.
Since x and y were arbitrary, the sum of any two odd 
integers is even.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

"x "y ((Odd(x) ∧ Odd(y))®Even(x+y))



Rational Numbers

• A real number x is rational iff there exist integers a
and b with b¹0 such that x=a/b.

Rational(x) := $a $b (((Integer(a) Ù Integer(b)) Ù (x=a/b)) Ù b¹0)    

Real Numbers
Domain of Discourse



Rationality

Prove: “The product of two rationals is rational.”
Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

Real Numbers
Domain of Discourse

Formally, prove "x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary reals.
Suppose x and y are rational.

Thus, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

"x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c, d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Now ac and bd are integers.  Also, since b ¹0 and d¹0 
Thus, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

"x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c, d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Now ac and bd are integers.  Also, since b ¹0 and d¹0 
Thus, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

"x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c, d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Now ac and bd are integers.  Also, since b ¹0 and d¹0 
By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

"x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c, d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Now ac and bd are integers.  Also, since b ¹0 and d¹0 
By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

"x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c, d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
ac and bd are integers.  Also, since b ¹0 and d¹0 we 
have bd¹0.  By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

"x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



English Proofs

• High-level language lets us work more quickly
– should not be necessary to spill out every detail
– examples so far

skipping Intro ∧ and Elim ∧ (and hence, Commutativity and Associativity)
skipping Double Negation
not stating existence claims (immediately apply Elim $ to name the object)
not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

– (list will grow over time)

• English proof is correct if the reader is convinced 
they could translate it into a formal proof
– the reader is the “compiler” for English proofs



Proof Strategies



Proof Strategies: Counterexamples

To prove ¬"x P(x), prove  ∃¬P(x) :
• Equivalent by De Morgan’s Law
• All we need to do that is find an 𝒙 where 𝑷(𝒙) is false
• This example is called a counterexample to "𝒙 𝑷(𝒙).

e.g. Prove “Not every prime number is odd”

Proof: 2 is a prime that is not odd — a counterexample 
to the claim that every prime number is odd.

An English proof does not need to cite De Morgan’s law.



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

1.1. ¬𝒒 Assumption
...

1.3. ¬𝒑
1. ¬𝒒® ¬𝒑 Direct Proof
2. 𝒑® 𝒒 Contrapositive: 1                       



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

1.1. ¬𝒒 Assumption
...
1.3. ¬𝒑

1. ¬𝒒® ¬𝒑 Direct Proof
2. 𝒑® 𝒒 Contrapositive: 1

We will prove the contrapositive.

Suppose ¬𝒒.
...
Thus, ¬𝒑.



Proof by Contradiction:  One way to prove p

If we assume ¬ p and derive F (a contradiction), then 
we have proven p.

1.1.  ¬𝒑 Assumption
...
1.3.  𝗙

1.   ¬𝒑® 𝗙 Direct Proof
2.   ¬¬𝒑 Ú 𝗙 Law of Implication: 1
3.   𝒑 Ú 𝗙 Double Negation: 2
4. 𝒑 Identity: 3



Proof Strategies: Proof by Contradiction

If we assume ¬ p and derive F (a contradiction), then 
we have proven p.

We will argue by contradiction.

Suppose ¬𝒑.
...
This is a contradiction.

Often, we will infer ¬R, where R is a prior fact.
Putting these together, we have R Ù ¬R º F

1.1.  ¬𝒑 Assumption
...

1.3.  𝗙
1.   ¬𝒑® 𝗙 Direct Proof
2.   ¬¬𝒑 Ú 𝗙 Law of Implication: 1
3.   𝒑 Ú 𝗙 Double Negation: 2
4. 𝒑 Identity: 3



Even and Odd

Prove: “No integer is both even and odd.”
Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We will argue by contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Rationals
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”
Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We will argue by contradiction.
Suppose that x is an integer that is both even and odd. 

This is a contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Rationals
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”
Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We will argue by contradiction.
Suppose that x is an integer that is both even and odd. 
Then, x=2a for some integer a, and x=2b+1 for some 
integer b. 

This is a contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Rationals
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”
Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We will argue by contradiction.
Suppose that x is an integer that is both even and odd. 
Then, x=2a for some integer a, and x=2b+1 for some 
integer b. This means 2a=x=2b+1 and hence 2a-2b=1 
and so a-b=½. But a-b is an integer while ½ is not, so 
they cannot be equal. This is a contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Rationals
Domain of Discourse

Formally, we’ve shown Integer(½) Ù ¬Integer(½) º F.



Proof by Cases

On Homework 3, Task 1 you are asked to show:
• Given 𝒑 → 𝒓 and ¬𝒑 → 𝒓 derive 𝒓
• Given  𝒑 ∨ 𝒒, 𝒑 → 𝒓 and 𝒒 → 𝒓 derive 𝒓

This will mean that…
If we prove p ® r and ¬ p ® r then we have proven r.

If we prove p Ú q, p ® r and q ® r then we have 
proven r.



Strategies

• Simple proof strategies already do a lot
– counter examples
– proof by contrapositive
– proof by contradiction
– proof by cases

• Later we will cover a specific strategy that applies 
to loops and recursion (mathematical induction)



Applications of Predicate Logic

• Remainder of the course will use predicate logic to 
prove important properties of interesting objects
– start with math objects that are widely used in CS
– eventually more CS-specific objects

• Encode domain knowledge in predicate definitions
• Then apply predicate logic to infer useful results

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse



Number Theory



Number Theory (and applications to computing)

• Branch of Mathematics with direct relevance to 
computing

• Many significant applications
– Cryptography & Security
– Data Structures
– Distributed Systems

• Important toolkit



Modular Arithmetic

• Arithmetic over a finite domain

• Almost all computation is over a finite domain



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}

Prints : “I will be alive for at least -186619904 seconds.”



Divisibility

Check Your Understanding.  Which of the following are true?

5 |	1 25 | 5 5 | 0 3 |	2

1 | 5 5 | 25 0 | 5 2 | 3

For 𝑎, 𝑏 with 𝑏 ≠ 0:
𝑏 | 𝑎 ↔ ∃𝑞 (𝑎 = 𝑞𝑏)

Definition: “b divides a”

Integers
Domain of Discourse



Check Your Understanding.  Which of the following are true?

5 |	1 25 | 5 5 | 0 3 |	2

1 | 5 5 | 25 0 | 5 2 | 3

Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

For 𝑎, 𝑏 with 𝑏 ≠ 0:
𝑏 | 𝑎 ↔ ∃𝑞 (𝑎 = 𝑞𝑏)

Definition: “b divides a”

Integers
Domain of Discourse



For 𝑎, 𝑏 with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 | 𝑎, then, by definition, we have 𝑎 = 𝑞𝑏 for some 𝑞.
The number 𝑞 is called the quotient.

Dividing both sides by 𝑏, we can write this as

𝑎
𝑏
= 𝑞

(We want to stick to integers, though, so we’ll write 𝑎 = 𝑞𝑏.)

Recall: Elementary School Division



For 𝑎, 𝑏 with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 ∤ 𝑎, then we end up with a remainder 𝑟 with 0 < 𝑟 < 𝑏.
Now,

instead of we have 

Multiplying both sides by 𝑏 gives us  𝑎 = 𝑞𝑏 + 𝑟
(A bit nicer since it has no fractions.)

Recall: Elementary School Division

𝑎
𝑏
= 𝑞

𝑎
𝑏
= 𝑞 +

𝑟
𝑏



For 𝑎, 𝑏 with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 | 𝑎, then we have 𝑎 = 𝑞𝑏 for some 𝑞.
If 𝑏 ∤ 𝑎, then we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 < 𝑟 < 𝑏.

In general, we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑏,
where 𝑟 = 0 iff 𝑏 | 𝑎.

Recall: Elementary School Division



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a % b.

For 𝑎, 𝑏 with 𝑏 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏
such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b

Integers
Domain of Discourse



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a % b.

r = a mod b

public class Test2 {
public static void main(String args[]) {

int a = -5;
int b = 2;
System.out.println(a % b);

}
}

For 𝑎, 𝑏 with 𝑏 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏
such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

Integers
Domain of Discourse



-7 -6 -5 -4 -3 -2 -1 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

-1 -1 -1 -1 -1 -1 -1 0  0  0  0  0  0  0  1  1  1  1  1  1  1  2  2

div and mod

x div 7

x

x mod 7
0  1  2  3  4  5  6  0  1  2  3  4  5  6  0  1  2  3  4  5  6  0  1

x = 7 · (x div 7) + (x mod 7)

7 · 1 7 · 27 · 07 · (-1)


