CSE 311: Foundations of Computing

Lecture 9: English Proofs, Strategies \& Number Theory

"Yes, yes, I know that, Sidney...everybody knows
that! ... But look: Four wrongs squared, minus two wrongs to the fourth power, divided by this
formula, do make a right."

Last class: Inference Rules for Quantifiers


```
**}\textrm{c}\mathrm{ is a NEW name.
List all dependencies for c.
```

* in the domain of P. No other name in P depends on a.
dependencies:
other named arbitrary constants in $\exists x P(x)$

Last class: Formal \& English Proofs: Even and Odd

Prove "The sum of two odd numbers is even."

Even $(x) \equiv \exists y \quad(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$ Domain: Integers

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have $x=2 a+1$ for some integer a and $y=2 b+1$ for some integer b.

Their sum is $x+y=\ldots=2(a+b+1)$
so $x+y$ is, by definition, even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1	$\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
3.2	$\operatorname{Odd}(\mathbf{x})$	Elim \wedge : 2.1
3.3	$\operatorname{Odd}(\mathbf{y})$	Elim ^: 2.1
3.4	$\exists \mathrm{z}(\mathrm{x}=2 \mathrm{z}+1)$	Def of Odd: 2.2
3.5	$x=2 a+1$	Elim \exists : 2.4: a depend x
3.6	$\exists \mathrm{z}(\mathrm{y}=2 \mathrm{z}+1)$	Def of Odd: 2.3
3.7	$y=2 b+1$	Elim $3: 2.5$: b depend y
3.8	$x+y=2(a+b+1)$	Algebra
3.9	$\exists z(x+y=2 z)$	Intro 3 : 2.4
	Even($\mathbf{x}+\mathbf{y}$)	Def of Even

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall \mathrm{y}((\operatorname{Odd}(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{y})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathrm{y})) \quad$ Intro \forall
5. $\forall x \forall y((O d d(x) \wedge$ Odd $(\mathrm{y})) \rightarrow$ Even $(\mathrm{x}+\mathrm{y}))$ Intro \forall

Last class: Even and Odd

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.
Suppose that both are odd. Then, we have $x=2 a+1$ for some integer a and $y=2 b+1$ for some integer b. Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even. \quad
$\forall x \forall y((\operatorname{Odd}(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{y})) \rightarrow E \operatorname{even}(\mathrm{x}+\mathrm{y}))$

Rational Numbers

- A real number x is rational iff there exist integers a and b with $\mathrm{b} \neq 0$ such that $\mathrm{x}=\mathrm{a} / \mathrm{b}$.

Rational $(x):=\exists \mathrm{ab}(((\operatorname{Integer}(\mathrm{a}) \wedge \operatorname{Integer}(\mathrm{b})) \wedge(\mathrm{x}=\mathrm{a} / \mathrm{b})) \wedge \mathrm{b} \neq 0)$

Prove: "The product of two rationals is rational."
Formally, prove $\forall x \forall y($ (Rational $(x) \wedge$ Rational (y)) \rightarrow Rational($x y)$)
Let x and y be arbitrary real numbers.
Suppose x and y are rational

Thus $x y$ is rational
Since x an y wore earl., we have shown

Rationality

Predicate Definitions

Rational(x) := $\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary reals.
Suppose x and y are rational.

Thus, $x y$ is rational.
Since x and y were arbitrary, we have shown that the product of any two rationals is rational.
$\forall x \forall y(($ Rational $(x) \wedge$ Rational(y)) \rightarrow Rational($x y))$

Rationality

Predicate Definitions

Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary rationals.

Thus, $x y$ is rational.
Since x and y were arbitrary, we have shown that the product of any two rationals is rational.
$\forall x \forall y(($ Rational $(x) \wedge$ Rational(y)) \rightarrow Rational($x y))$

Rationality

Predicate Definitions	
Rational $(x):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b)$	$(x=a / b) \wedge(b \neq 0))$

rove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary rationals.
Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.

$$
x y=(a / b) / c(d)=(a c) /(b d)
$$

Thus, $x y$ is rational.
Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Rationality

Predicate Definitions

Rational(x) := $\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary rationals.
Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.

By definition, then, $x y$ is rational.
Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Rationality

Rational(x) := $\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary rationals.
Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.
Multiplying, we get that $x y=(a / b)(c / d)=(a c) /(b d)$.

By definition, then, $x y$ is rational.
Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Rationality

Rational(x) := $\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary rationals.
Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.
Multiplying, we get that $[x y=(a / b)(c / d)=(a c) /(b d)$.
ac and bd are integers. Also, since $b \neq 0$ and $d \neq 0$ we have $b d \neq 0$. By definition, then, $x y$ is rational.
Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

English Proofs

- High-level language lets us work more quickly
- should not be necessary to spill out every detail
- examples so far
skipping Intro \wedge and Elim \wedge (and hence, Commutativity and Associativity)
skipping Double Negation
not stating existence claims (immediately apply Elim \exists to name the object)
not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)
- (list will grow over time)
- English proof is correct if the reader is convinced they could translate it into a formal proof
- the reader is the "compiler" for English proofs

Proof Strategies

Proof Strategies: Counterexamples

To prove $\neg \forall x P(x)$, prove $\begin{aligned} & \exists x \neg \neg(x) \\ & \exists \neg P(x) \text { : }\end{aligned}$

- Equivatent by De Morgan's Law
- All we need to do that is find an x where $P(x)$ is false
- This example is called a counterexample to $\forall \boldsymbol{x} \boldsymbol{P}(x)$.

e.g. Prove "Not every prime number is odd"

Proof: $\mathbf{2}$ is a prime that is not odd - a counterexample to the claim that every prime number is odd. \square

An English proof does not need to cite De Morgan's law.

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

$$
\begin{array}{rll}
& \text { 1.1. } \neg q & \text { Assumption } \\
& \ldots & \\
& \text { 1.3. } \neg p & \\
\text { 1. } \neg q \rightarrow \neg p & \text { Direct Proof } \\
\text { 2. } p \rightarrow q & \text { Contrapositive: } 1
\end{array}
$$

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.
Suppose $\neg q$.

Thus, $\neg p$.
1.1. $\neg q$
...
1.3. $\neg p$

1. $\neg q \rightarrow \neg p \quad$ Direct Proof
2. $p \rightarrow q \quad$ Contrapositive: 1

Assumption

Proof by Contradiction: One way to prove p

If we assume $\neg \mathrm{p}$ and derive F (a contradiction), then we have proven p.

1.1. $\neg p$	Assumption
1.3. F	
1. $\neg p \rightarrow F$	Direct Proof
2. $\neg \neg p \vee F$	Law of Implication: 1
3. $\boldsymbol{p} \vee \mathrm{F}$	Double Negation: 2
4. p	Identity: 3

Proof Strategies: Proof by Contradiction

If we assume $\neg \mathrm{p}$ and derive F (a contradiction), then we have proven p.

Often, we will infer $\neg R$, where R is a prior fact. Putting these together, we have $R \wedge \neg R \equiv F$

Predicate Definitions
 $\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
Proof: We will argue by contradiction.

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
Proof: We will argue by contradiction.
Suppose that x is an integer that is both even and odd.

This is a contradiction.■

Prove: "No integer is both even and odd."

Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
Proof: We will argue by contradiction.
Suppose that x is an integer that is both even and odd. Then, $x=2 a$ for some integer a, and $x=2 b+1$ for some integer b.

This is a contradiction.

Even and Odd

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."

Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
Proof: We will argue by contradiction.
Suppose that x is an integer that is both even and odd. Then, $x=2 a$ for some integer a, and $x=2 b+1$ for some integer b. This means $2 a=x=2 b+1$ and hence $2 a-2 b=1$ and so $a-b=1 / 2$. But $a-b$ is an integer while $1 / 2$ is not, so they cannot be equal. This is a contradiction. \square

Formally, we've shown Integer $(1 / 2) \wedge \neg$ Integer $(1 / 2) \equiv \mathrm{F}$.

Proof by Cases

On Homework 3, Task 1 you are asked to show:

- Given $p \rightarrow r$ and $\neg p \rightarrow r$ derive r
- Given $p \vee q, p \rightarrow r$ and $q \rightarrow r$ derive r

This will mean that... If we prove $p \rightarrow r$ and $\neg p \rightarrow r$ then we have proven r.

If we prove $p \vee q, p \rightarrow r$ and $q \rightarrow r$ then we have proven r.

Strategies

- Simple proof strategies already do a lot
- counter examples
- proof by contrapositive
- proof by contradiction
- proof by cases
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove important properties of interesting objects
- start with math objects that are widely used in CS
- eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$

Number Theory

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography \& Security
- Data Structures
- Distributed Systems
- Important toolkit

Modular Arithmetic

- Arithmetic over a finite domain
- Almost all computation is over a finite domain

I'm ALIVE!

public class Test \{
final static int SEC_IN_YEAR = 364*24*60*60*100; public static void main(String args[]) \{ System.out.println(
"I will be alive for at least " + SEC_IN_YEAR + + " seconds."

I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
            System.out.println(
            "I will be alive for at least " +
            SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```

```
I----jGRASP exec: java Test 
    ----jGRASP: operation complete.
```


Divisibility

Definition: " b divides a "

For a, b with $b \neq 0$:

$$
b \mid a \leftrightarrow \exists q(a=q b)
$$

Check Your Understanding. Which of the following are true?

Divisibility

Definition: " b divides a"

For a, b with $b \neq 0$:

$$
b \mid a \leftrightarrow \exists q(a=q b)
$$

Check Your Understanding. Which of the following are true?

5|1
5 | 1 iff $1=5 k$

1 | 5 iff $5=1 k$

25 | 5
25 | 5 iff $5=25 k$

5| 25 iff $25=5 k$

$5 \mid 0$ iff $0=5 k$
$0 \mid 5$
$0 \mid 5$ iff $5=0 k \quad 2 \mid 3$ iff $3=2 k$

2 | 3
3|2
$3 \mid 2$ iff $2=3 k$

Recall: Elementary School Division

For a, b with $b>0$, we can divide b into a.

If $b \mid a$, then, by definition, we have $a=q b$ for some q.
The number q is called the quotient.

Dividing both sides by b, we can write this as

$$
\frac{a}{b}=q
$$

(We want to stick to integers, though, so we'll write $a=q b$.)

Recall: Elementary School Division

For a, b with $b>0$, we can divide b into a.

If $b \nmid a$, then we end up with a remainder r with $0<r<b$. Now,

$$
\text { instead of } \quad \frac{a}{b}=q \quad \text { we have } \quad \frac{a}{b}=q+\frac{r}{b}
$$

Multiplying both sides by b gives us

$$
a=q b+r
$$

(A bit nicer since it has no fractions.)

Recall: Elementary School Division

For a, b with $b>0$, we can divide b into a.

If $b \mid a$, then we have $a=q b$ for some q.
If $b \nmid a$, then we have $a=q b+r$ for some q, r with $0<r<b$.

In general, we have $a=q b+r$ for some q, r with $0 \leq r<b$, where $r=0$ iff $b \mid a$.

Division Theorem

Division Theorem

For a, b with $b>0$
there exist unique integers q, r with $0 \leq r<b$ such that $a=q b+r$.

To put it another way, if we divide b into a, we get a unique quotient $q=a \operatorname{div} b$ and non-negative remainder $r=a \bmod b$

Division Theorem

Division Theorem

For a, b with $b>0$
there exist unique integers q, r with $0 \leq r<b$ such that $a=q b+r$.

To put it another way, if we divide b into a, we get a unique quotient $q=a \operatorname{div} b$ and non-negative remainder $r=a \bmod b$ O

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int b = 2;
        >/2=-2
        System.out.println(a % b);
    }

\section*{div and mod}
\[
x=7 \cdot(x \operatorname{div} 7)+(x \bmod 7)
\]
```

