CSE 311: Foundations of Computing

Lecture 9: English Proofs, Strategies & Number Theory

"Yes, yes, I know that, Sidney...everybody knows that!...But look: Four wrongs squared, minus two wrongs to the fourth power, divided by this formula, do make a right."

Last class: Inference Rules for Quantifiers

Elim
$$\exists$$
 $\exists x P(x)$ Intro \forall Let a be arbitrary*"...P(a) \therefore P(c) for some special** c \therefore $\forall x P(x)$

** c is a NEW name. List all dependencies for c.

dependencies:

other named arbitrary constants in $\exists x P(x)$

* in the domain of P. No other name in P depends on a.

Last class: Formal & English Proofs: Even and Odd

Prove "The sum of two odd numbers is even."

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the sum of two odd integers is even.

Let x be an arbitrary integer
 Let y be an arbitrary integer
 Odd(x) ∧ Odd(y) Assumption
 Odd(x) Elim ∧: 2.1
 Odd(y) Elim ∧: 2.1

- **3.4** ∃z (x = 2z+1)
 Def of Odd: 2.2

 3.5 x = 2a+1
 Elim ∃: 2.4: a depend x

 3.6 ∃z (y = 2z+1)
 Def of Odd: 2.3

 3.7 y = 2b+1
 Elim ∃: 2.5: b depend y
- **3.8** x+y = 2(a+b+1) Algebra

3.9 ∃z (x+y = 2z)
 Intro ∃: 2.4

 3.10 Even(x+y)
 Def of Even

3. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ DPR **4.** $\forall y ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y}))$ Intro \forall

5. $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$ Intro \forall

Integers

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

 $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

 A real number x is *rational* iff there exist integers a and b with b≠0 such that x=a/b.

Rational(x) := $\exists a \exists b (((Integer(a) \land Integer(b)) \land (x=a/b)) \land b \neq 0)$

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Formally, prove $\forall x \forall y$ ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))

Let x and y be arbitrary real numbers. Suppose x and y are rational

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary reals.

Suppose x and y are rational.

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary rationals.

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c, d, where $d\neq 0$.

xy = (a/b)(c/d) = (a/b)(bd)

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where $b \neq 0$, and y = c/d for some integers c, d, where $d \neq 0$.

By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where $b \neq 0$, and y = c/d for some integers c, d, where $d \neq 0$.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).

By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b \neq 0, and y = c/d for some integers c, d, where d \neq 0. Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd) ac and bd are integers. Also, since b \neq 0 and d \neq 0 we have bd \neq 0. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

English Proofs

- High-level language lets us work more quickly
 - should not be necessary to spill out every detail

examples so far

skipping Intro \wedge and Elim \wedge (and hence, Commutativity and Associativity) skipping Double Negation

not stating existence claims (immediately apply Elim \exists to name the object) not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)

(list will grow over time)

- English proof is correct if the <u>reader</u> is convinced they could translate it into a formal proof
 - the reader is the "compiler" for English proofs

Proof Strategies

Proof Strategies: Counterexamples

To prove $\neg \forall x P(x)$, prove $\exists \neg P(x)$:

- Equivalent by De Morgan's Law
- All we need to do that is find an x where P(x) is false

 $\frac{1}{2} \times 100$

• This example is called a *counterexample* to $\forall x P(x)$.

e.g. Prove "Not every prime number is odd"

Proof: 2 is a prime that is not odd — a counterexample to the claim that every prime number is odd.

An English proof does not need to cite De Morgan's law.

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

1.1. $\neg q$ Assumption ... 1.3. $\neg p$ 1. $\neg q \rightarrow \neg p$ Direct Proof 2. $p \rightarrow q$ Contrapositive: 1 If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.

Suppose $\neg q$.	1.1. ¬ <i>q</i>	Assumption
	•••	
Thus, ⊣ <i>p</i> .	1.3. ¬ <i>p</i>	
	1. $\neg q \rightarrow \neg p$	Direct Proof
	2. $p \rightarrow q$	Contrapositive: 1

Proof by Contradiction: One way to prove **p**

If we assume $\neg p$ and derive **F** (a contradiction), then we have proven **p**.

	1.1. ¬ <i>p</i>	Assumption
	1.3. F	
1.	eg p o F	Direct Proof
2.	¬¬ $m{p} \lor m{F}$	Law of Implication: 1
3.	$oldsymbol{p} ee {f F}$	Double Negation: 2
4.	p	Identity: 3

Proof Strategies: Proof by Contradiction

If we assume $\neg p$ and derive **F** (a contradiction), then we have proven **p**.

We will argue by contradiction. Assumption Suppose $\neg p$. 1.3. F This is a contradiction. 1. $\neg p \rightarrow F$ Direct Proof2. $\neg \neg p \lor F$ Law of Implication: 13. $p \lor F$ Double Negation: 24. pIdentity: 3 Often, we will infer $\neg R$, where R is a prior fact.

Putting these together, we have $R \land \neg R \equiv F$

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$ Domain of Discourse Rationals

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We will argue by contradiction.

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$ Domain of Discourse Rationals

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd.

This is a contradiction. ■

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$ Domain of Discourse Rationals

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd. Then, x=2a for some integer a, and x=2b+1 for some integer b.

This is a contradiction. ■

Even(x) = $\exists y (x = 2y)$

 $Odd(x) \equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Rationals

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We will argue by contradiction.

Even and Odd

Suppose that x is an integer that is both even and odd. Then, x=2a for some integer a, and x=2b+1 for some integer b. This means 2a=x=2b+1 and hence 2a-2b=1 and so a-b=½. But a-b is an integer while ½ is not, so they cannot be equal. This is a contradiction. ■

Formally, we've shown $Integer(\frac{1}{2}) \land \neg Integer(\frac{1}{2}) \equiv F.$

On Homework 3, Task 1 you are asked to show:

- Given $p \rightarrow r$ and $\neg p \rightarrow r$ derive r
- Given $p \lor q$, $p \to r$ and $q \to r$ derive r

This will mean that...

If we prove $p \rightarrow r$ and $\neg p \rightarrow r$ then we have proven r.

If we prove $p \lor q$, $p \rightarrow r$ and $q \rightarrow r$ then we have proven r.

Strategies

- Simple proof strategies already do a lot
 - counter examples
 - proof by contrapositive
 - proof by contradiction
 - proof by cases
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove <u>important</u> properties of <u>interesting</u> objects
 - start with math objects that are widely used in CS
 - eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

 $\begin{array}{l} \mbox{Predicate Definitions} \\ \mbox{Even}(x) \equiv \exists y \ (x = 2 \cdot y) \\ \mbox{Odd}(x) \equiv \exists y \ (x = 2 \cdot y + 1) \end{array}$

Number Theory

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography & Security
 - Data Structures
 - Distributed Systems
- Important toolkit

- Arithmetic over a finite domain
- Almost all computation is over a finite domain

I'm ALIVE!

```
public class Test {
   final static int SEC_IN_YEAR = 364*24*60*60*100;
   public static void main(String args[]) {
     System.out.println(
          "I will be alive for at least " +
          SEC_IN_YEAR + " seconds."
     );
   }
}
```

I'm ALIVE!

```
public class Test {
   final static int SEC_IN_YEAR = 364*24*60*60*100;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC IN YEAR * 101 + " seconds."
      );
         ----jGRASP exec: java Test
        I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```

Divisibility

Definition: "b divides a"

For a, b with $b \neq 0$: $b \mid a \leftrightarrow \exists q \ (a = qb)$

Check Your Understanding. Which of the following are true?

Divisibility

Definition: "b divides a"

For a, b with $b \neq 0$: $b \mid a \leftrightarrow \exists q \ (a = qb)$

Check Your Understanding. Which of the following are true?

For a, b with b > 0, we can divide b into a.

If $b \mid a$, then, by definition, we have a = qb for some q. The number q is called the *quotient*.

Dividing both sides by *b*, we can write this as

$$\frac{a}{b} = q$$

(We want to stick to integers, though, so we'll write a = qb.)

For a, b with b > 0, we can divide b into a.

If $b \nmid a$, then we end up with a remainder r with 0 < r < b. Now,

instead of
$$\frac{a}{b} = q$$
 we have $\frac{a}{b} = q + \frac{r}{b}$

Multiplying both sides by *b* gives us (A bit nicer since it has no fractions.)

a = qb + r

For a, b with b > 0, we can divide b into a.

- If $b \mid a$, then we have a = qb for some q.
- If $b \nmid a$, then we have a = qb + r for some q, r with 0 < r < b.

In general, we have a = qb + r for some q, r with $0 \le r < b$, where r = 0 iff $b \mid a$.

Integers

To put it another way, if we divide b into a, we get a unique quotient $q = a \operatorname{div} b$ and non-negative remainder $r = a \operatorname{mod} b$

> Note: $r \ge 0$ even if a < 0. Not quite the same as $a \ b$.

To put it another way, if we divide *b* into *a*, we get a unique quotient $q = a \operatorname{div} b$ and non-negative remainder $r = a \operatorname{mod} b$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int b = 2;
        System.out.println(a % b);
    }
} Note: r ≥ 0 even if a < 0.
Not quite the same as a % b.</pre>
```

